
-R1B5 626 RTORTING RULE STRENGTHS IN EXPERT SSTEMSLD) DUKE 1/2
UNIV DtOM NC DEPT OF COMPUTER SCIENCE M G YRLTORTR
MY 87 RFOSR-TR-87-1348 SRFOSR-83-B205

UNCLRSSFED F/G 12/9 NL

EIlEllElllllEE
IIEEIIIEEEEEEE
EIIIIEEEIIIEEE
EllEEEEElhElI
EEEEIIEIIEEEEE
IIIIIIEEEEEIIE

I-6

l- I ~ ~Y

Y,€.-'- $$W€ .o. V,,-s'- W 'C. MJ l ["X V ~VW~ .

UMENTATION PAGE L,
:.&S u' % F?1S'G UMNATO " i

isia~ m A D - A 1 8 5 6 2 6 - O,_T _i ____,OIA¥&,_._.,_,__O_._.O_

~Approved for public release;

ONE C&AW $CAT 1,.owf s 0p W7 distribution unlimited.

s. ,Ou,, @oa*,*TO -*, 3cv 4 8

A IMA OP PUNPO0W,'%G O0GANIZATI0# ei O YMIOL sT. U NMI OP MNSITOUiNG O1GANISZATSO*f

Duke University dr m.h.,

Computer Science Departmen ___________ Air Force Office of Scientific Research

4c LOOPRISS ICp. Som m ZIP C -ui ft. A00*68 (Cut. Sm &% ZIP CW$

Air Force System Command
Durham, North Carolina 27706 Bolling AFB./ 6 \ L10

_____________________ __________ ashne &-.D.C. 20332
& AMe Of PUNDINGsiIeP.OIGk. OPCK SIVOOL S. PAOCuSIM6WT IOISTSuNT IOkTIPICATIOd wuNeggpi
CfG"NIZATsON elILT l60"?

C) .t APOSR 83-0205

fAF065UvCeft. #00 mE ZIP Cio so SOUUC6 OP PUND1160 "O8.

C\ 4\O PUOSgi" PROAT TA*8 WM UNoIT
IIf F! _i 70~ C_ IO Eu t NO. NO. No. "0.

ine4p etretsy stwNem .

Automating rule strengths in expert system I
_ . : ,I- -I I I--

12. PiSi AL AUTMOAI

Marco G. Valtorta
TvPe OP uBPO.l T.ag . SO i. 131 OT MA0T V69,..0... |, 1 .. PEOueY

Technical To 1987 May Iviii + 146
If. UPPLIW NP4IAV NOTATION"

Ph.D. dissertation

1T ¢OS&TS coca$ I& I 'T T *NW Cm an Wtm W oa ramp =W Naft ow 'tmmr#

P!E G, CA... Expert systems, reasoning with uncertainty, knowledge-Ibased systems, rule strength determination, NP-hard
roblems

19. ATRACT #Cwanml o ig"uM i fgW0WWV M a telf bi Wme I

'Automating rule strengths in expert systems is a way to alleviate the knowledge
acquisition bottleneck. It is assumed that rules are fixed, except for the values of
their strengths, which are computed or adjusted from initial values given by experts.

A mod4l of expert systems is proposed, in which rules have the form
IF (P & &

. . & P) THEN C WITH ATTENUATION a, where PI, Pi' . ." P ' and C

are weighted propositions, i.e., statements with a certainty factor (CF), and a, the
strength of the rule, is a number between 0 and 1.

To compute rule attenuations, two problem settings are considered. In the first, an
oracle is given, that can provide the CFs of the conclusions of the entire rule-based
system, given any assignment of certainty factors to the premises of the entire
system (complete case). In the second, a fixed set of cases is available (incomplete
case).+(r~ntinued on baghk)
oU 0470IroW avIom.AGLoTV OP YISTRACl 21 AGGTACT WECuSITv C.A#MoPCAmsOS

LVCS'PLMOU ITWLoMoO V SAIN AS OPT 0 OTIC wmn C

'tAQol OP MaSPO#usLgOL 0ovaOVO uA. tab YELPWolte WuMIl Z OPtCE SOyKL

0 M 1473. 3 APR 90IoVos O f I* & 72 , 0 6t 4061EY W_ ______ _______________

5guSW C~L*V€IIPCAYSO.o OP Yg..l 5*01

|jC'

.% %-.

19. (continued)

jA fast algorithm for synthesis in the complete case for simple rule bases is given
both for MAX and probabilistic sum.

In the incomplete case, the synthesis of attenuations is shown to be NP-Complete,
even for very shallow rule bases with only two propositions in the premise of each
rule, both for MAX and probabilistic sum. The refinement of attenuations from
expert-given estimates is shown to be NP-Hard, no matter how close to the correct
value the estimates are and how small an improvement towards the correct value is
desired. . .

AFOSR.Th.- 87 - 1348

CS-1987-15

Automating Rule Strengths in Expert Systems

Marco Valtorta

Department of Computer Science
Duke University

co"v

Accesion For

NTIS CRAMI
CTIC TAB 0
Utiannoigccd [D
Justificati.8"

Avwlabilty CoQdes

This PhD. dissertation was partially supported by Air Forte Office of Scientific Research Grants AFOS4I2 ad
AFOSRJ42OIM, with my adviser D. W. Lavelaad as principal investigator.

Copyright by

Marco Valtorta

1987

ABSTRACT

Automating rule strengths in expert systems is a way to
alleviate the knowledge acquisition bottleneck. It is assumed
that rules are fixed, except for the values of their strengths,
which are computed or adjusted from initial values given by
experts.

A model of expert systems is proposed, in which rules have
the form IF (P 1 & P2 & . .. & P) THEN C WITH ATTENUATION a,
where P I P , . .*, P , and C ape weighted propositions, i.e.,
statemeAts Kith a certainty factor (CF), and a, the strength of
the rule, is a number between 0 and 1. Certainty factors are
numbers between 0 and 1. The premise of the rule has a CF that
is computed by taking the MIN of the CFs of its component
conjuncts. The CF of the premise is multiplied by the strength
of the rule to obtain the CF of the conclusion, C. Many rules
may conclude the same proposition; their CFs are merged by
using the MAX or the probabilistic addition functions.

To compute rule attenuations, two problem settings are
considered. In the first, an oracle is given, that can provide
the CFs of the conclusions of the entire rule-based system,
given any assignment of certainty factors to the premises of
the entire system (complete case). In the second, a fixed set
of cases is available (incomplete case).

A fast algorithm for synthesis in the complete case for
simple rule bases is given both for MAX and probabilistic sum.
It is shown that, when premises are shared among rules, a well-
known result in the testing of Boolean circuits implies that
determination of a rule strength is NP-Complete. However, a
fast algorithm is given for the determination of input
attenuat ions.

In the incomplete case, the synthesis of attenuations is
shown to be NP-Complete, even for very shallow rule bases with
only two propositions in the premise of each rule, both for MAX
and probabilistic sum. The refinement of attenuations from
expert-given estimates is shown to be NP-Hard, no matter how
close to the correct value the estimates are and how small an
improvement towards the correct value is desired.

The NP-Hardness proofs are exploited to define a strict
condition under which a fast algorithm for the MAX case exists
and to interpret several simple iterative algorithms.

TABLE OF CONTENTS

ABSTRACT
TABLE OF CONTENTS
LIST OF ILLUSTRATIONS
ACKNOWLEDGMENTS

ONE INTRODUCTION
1. The problem in practice 1
2 . A methodology 3
3. Summary of results 7
4. Organization of the thesis. 14

TWO MODELING
1. Introduction 15
2. A model of expert systems 15
3. Synthesis, refinement, and learning models 21

THREE TEST GENERATION
1. Introduction 23
2. The test generation problem 23

FOUR THE COMPLETE CASE
1. Introduction 27
2. Independent attenuations 27
3. Synthesis of attenuations: MIN/MAX case . . . 35
4. Algorithms to redistribute attenuations . . . 37
5. Synthesis of attenuations:

MIN/probabilistic sum case 41

FIVE THE INCOMPLETE CASE
1. Introduction 47
2. Synthesis of attenuations: MIN/MAX case . 47
3. Synthesis of attenuations:

MIN/probabilistic sum case 60

SIX CHAINS
1. Introduction 65
2. Complete and incomplete ca;es 65

SEVEN GRAPHS
1. Introduction 70
2. Attenuation synthesis in MIN/MAX graphs

with 0/I weights 70
3. Attenuation synthesis in MIN/MAX graphs

with large CF alphabets 78

EIGHT APPROXIMATIONS AND INTERMEDIATE VALUES
1. Introduction 85
2. Approximations 85
3. Intermediate values... 86

1 1

RIO'1 111 1,JI 1KN O&

NINE REFINEMENT
1. Introduction 94
2. Synthesis of attenuations when principal*

paths are known 94
3. Refinement from good estimates. 107
4.A fast algorithm 116
5. Iterative algorithms 125

TEN CONCLUSION
1. Introduction 131
2. Assessment of results.............131
3. Directions for further research 132
4. Open problems: truncated multiplication . 133
5. Open problems: maximum compatible set

of tests o. 136
6. Open problems: refinement with

probabilistic sum....... 137

REFERENCES 141

8 LIST OF ILLUSTRATIONS

1.1 An inference net representing two rules 8
1.2 Summary of results on synthesis, MIN/MAX11
1.3 Summary of results on synthesis, MIN/p+12
1.4 Summary of results on refinement 13

2.1 Graphical representation of a rule 17
2.2 An inference net representing two rules 18
2.3 A small portion of the rule base of the Graduate

Course Adviser 19

3.1 Network representing -[(A&B)vC] 25

4.1 Complete inference tree of depth d, with p inputs 29
4.2 An inference tree with sum combinators and

integrators. -..... .. . 32
4.3 Inference tree with sum integrators and subtractor

combinators 34
4.4 Sensitizing a path............... . 36
4.5 Sensitizing a path, when there is a lowest input CF 37
4.6 An inference tree with redundant attenuators . . . 39
4.7 Subgraph for the probabilistic sum case 41
4.8 Sensitizing a path with probabilistic sum 43
4.9 Example of use of algorithm 4.1 45

5.1 Restricted networks 48
5.2 A natural building block - . 49
5.3 Network equivalent to that in Figure 5.1 50
5.4 Tree of the generic RA instance52
5.5 Instance of RA corresponding to

(xvx2vx3)&(-xv-xv-x) 54

5.7 Constiai ts3on atienuitios . 59
5.8 A simple inference tree...... 60
5.9 The generic RAP instance 61
5.10 Instance of RAP corresponding to

(x 1 vx2 vx 3)&(x 1 vx 2VX 4) 63

7.1 Correspondence between certain inference nets and
Boolean networks 73

7.2 A four-input monotone Boolean function...........76
7.3 A three-input monotone function80

8.1 If the m 's are given, attenuations can be
synthisized easily 87

8.2 If the v 's are given, it is easy to synthesize
atten1ations 88

8.3 MAX subgraph for the v case....89
8.4 Simple inference netwofk using Gallant's model . 90

8.5 An acyclic inference net, a dependency matrix and
two cases 91

8.6 An example of a learning matrix 92

9.1 Generic RASP instance. 97
9.2 Instance of RASP corresponding to (xlvx2)&(-x 1-x2) 99
9.3 Generic RASP instance, redrawn 100
9.4 Sample MIN/p+ inference tree 102
9.5 Influential bundle for the tree in Figure 9.3 . . . 103
9.6 Inference tree and its influential bundle104
9.7 Inference tree and its influential path 105
9.8 Generic RASPp+ instance 106
9.9 Error propagation 108
9.10 Tree of the generic ERD instance 110
9.11 Test of the generic ERD instance 111
9.12 Test of the generic ERD instance I11
9.13 Tests of the generic ERD instance 112
9.14 ERD instance corresponding to (x vx)&(-x v-x2) 115
9.15 Converting n-input boxes into 2-Inpit box1s

(initial phase).. 118
9.16 Converting n-input boxes into 2-input boxes

(intermediate phase) 119
9.17 Converting n-input boxes into 2-input boxes

(final phase)........120
9.18 Inference tree for example 9.7 123
9.19 Inference tree for example 9.8 124
9.20 A tree on which Algorithm 9.2 fails 126
9.21 A tree on which Algorithm 9.2 fails127
9.22 A tree on which Algorithm 9.4 fails 129

10.1 Truncated multiplications of order 4 134
10.2 Instance of the refinement problem with

probabilistic sum 139
10.3 Influential bundles for the example in Figure 10.2 140

.

ACKNOWLEDGEMENTS

This work would not have started without the support of the
Commission for Cultural Exchanges between Italy and the United
States, which awarded me a Fulbright grant that paid my travel
to the United States and supported me for the first nine month
of my stay. Most of the work described in this dissertation
was supported by grants awarded by the Air Force Office of
Scientific Research (AFOSR-81-0221 and AFOSR-83-0205) to my
adviser, Professor Donald W. Loveland.

Thanks to my wife, Laura, for supporting me in many ways
throughout the development of the research written in this
dissertation, and to my parents, who encouraged me to begin and
to complete this work.

The Department of Computer Science at Duke University
provided a pleasant and stimulating environment for research.
Let me remember with sincere thanks some of my fellow graduate
students: Mark Aulick, Mike Leuze, Mary Mace, Charles Poirier,
G.B. "Gobi* Srinivasan, Happy Deas, Pam Fink, Scott Bradley,
Jim Ellis, Tom Truscott, Steve Daniel, Durward Rogers, Jothy
Rosenberg, John Dallen, Dave Mutchler, Mark Smotherman, Mark
Rosso, Barry Koster, Joel Saltz, Roger Smith, Charlie Martin,

A Doug Elliott, Albert Nigrin, Victor Nicol, Amr"Fahmi, and
Andrew Reibman. Special thanks to Bruce Smith of UNC-Chapel
Hill for the many hours of good work together on the Graduate
Course Adviser.

MU

CHAPTER ONE

INTRODUCTION

The problem in practice

One of the reasons first proposed to motivate the use of
rules for expert systems is that they capture a "chunk" of an
expert's knowledge in an explicit way [Davis and King, 1977].
The rules, it was proposed, could be acquired throughinterviews with an expert in the field of interest with concern

only to the correctness of each one of the rules. The
knowledge engineer's job would be to help the expert formulate
the rules, extract rules from examples, and resolve lexical
problems. It was suggested that the separation of rules
("knowledge") and rule interpreter ("inference engine") would
allow the expert-knowledge engineer team to concentrate
exclusively on the correctness of the individual rules. The
inference engine would then use this knowledge to solve the
problems posed to the expert system, Just as the human expert
uses deductive reasoning to organize fact and knowledge to
solve the problems presented to him. This view was
corroborated by the apparent power of production rules as a
knowledge representation formalism and by advances in the
practice of logic programming.

A Prolog program [Kowalski, 1979; Clocksin and Mellish,
1981] can be viewed as a deterministic expert system: rules and
facts correspond to clauses and the rule interpreter
corresponds to the Prolog interpreter. Prolog, at least
without non-logical features such as "cut" and "var", has
simple declarative semantics (Van Emden and Kowalski, 1976].
Therefore, ideally one could write a Prolog program ignoring
the model of its interpreter, while concentrating on the
correctness of the program's clauses, just as one needs only to
concentrate on the correctness (perhaps, "adequacy" would be a
better term) of the axioms describing a theorem to be solved by
a theorem prover, ignoring the computational model that
represents the prover itself.

The analogy between logic programming and knowledge
engineering should now be apparent: in both cases, one need not
bother with "how" a problem is solved (i.e., how knowledge is
used, how clause are invoked), but only with "what" is stated
(i.e., the conformity of rules or clauses to the expert's or0 1

2

programmer's view of the world). If the knowledge is correct,
everything will work well. In particular, correctness of each
rule is sufficient to insure correctness of the rule base.
Again, there is a strong analogy between production rule
systems and logic programming.

The contradiction backtracking algorithm [Shapiro, 1982;
Shapiro, 1981] finds a wrong clause in a logic program that
computed a wrong result, provided that an oracle exists that
can decide whether any clause in the program, when
instantiated, is right or wrong. Usually, the oracle is the
programmer himself. In a production system, an incorrect
result must also derive from an incorrect production, as argued
in [Brownston et al., 1985].

Shapiro proposed to extend the contradiction backtracking
algorithm to a "Prolog with uncertainties" [Shapiro, 1983]. He
writes: "Assume that a logic program with uncertainties has a
conclusion A whose computed certainty is judged by the expert
to be too high. We can conclude that, according to the
interpretation the expert has in mind, the program contains at
least one false clause. Such a clause can be detected by
querying the expert about the truth (or certainty) of
intermediate conclusions obtained during the proof of A, as

m done in [Shapiro, 1982]."

I contend that this suggestion is totally impractical,
because of the impossibility of an expert judging precisely
what the certainty of intermediate conclusions (or,
equivalently, the strengths of rules) should be. The reason
for this is that even small differences in the strength of
individual rules can lead to changes in the ranking of
intermediate hypotheses and conclusions. In practice,
therefore, the strength of a rule is correct only relatively to
the strength of other rules and the correct strength of a rule
depends on the strength of other rules and the mechanism used
to combine them (i.e., on the inference engine).

An example of this difficulty, with a MYCIN-like system, is
presented in [Brooks and Heiser, 1980]: "Suppose that the
possible diagnoses for a patient are Dl(0.9) and D2(0.7). [0.9
and 0.7 are the CFs of Dl and D2.] This means that the
evidence in favor of D1 is stronger than that in favor of D2.
Furthermore, suppose that the following two rules for
medication exist.
RI: If diagnosis = Dl, then medication = M1(0.6).
R2: If diagnosis - D2, then medication = M2(0.9).
When rules R1 and R2 are applied and the certainty factors are
multiplied together, the certainties are
Ml: 0.9*0.6 = 0.54
M2: 0.7*0.9 - 0.63.

L~iiiiiimmmmmb. ill 11

3

Thus, the system would recommend medication M2 for diagnosis
Dl!" It seems that the 2'signer of MYCIN anticipated this
problem when he stated: "There are two kinds of medical
decisions that may be involved in a [clinical decision-making]
system--the determination of the patient's diagnosis or [sic]
the appropriate way to treat him" (Shortliffe, 1976, p.12].
The problem described by Brooks and Heiser could be solved by
splitting the system in two phases, one concerned with
diagnosis, the other with treatment. Only treatment of the
most likely illnesses would be addressed. (If the cost of
treatment were a consideration, the expert would concentrate on
treating the most likely illness only.) This two-phase
decomposition would be analogous to the one used in the
Graduate Course Adviser [Valtorta et al., 1984].

Still, in general, one cannot expect the expert or even the
knowledge engineer to anticipate all the ways in which rule
strengths and hypotheses certainties will interact in actual
consultations. If the knowledge engineer could do so, there
would be no need to separate rules from inference engine, and
he could write a conventional program just as well. As Shapiro
writes, "One reason for expert systems being composed of a
rule-base and an inference mechanism is to allow the expert to
effectively transfer her knowledge in a declarative form to the
system, even when she is ignorant of the particular inference
mechanism used."

One wants to encode correct knowledge independently of the
way it will be used, but one must know how it is used in order
for the knowledge to be correct. Is there a way out of this
dilemma?

A methodology

The methodology that I propose to overcome the impasse
described in the previous section could be summarized in the
phrase knowledge refinement.

One of the guiding principles for expert system builders is
that "in the knowledge lies the power." (See [Feigenbaum,
1977], although the quotation is not literally there.) The
rules of an expert system are, of course, the "knowledge"
there. Successful (and not so successful) expert systems were
designed in an incremental, iterative way. One of the most
easily identifiable phases in this process, sometimes called
tuning, consists of the refinement of the strengths associated
to the rules. This phase is not recorded and discussed as well
as it deserves in the literature, perhaps because of the
natural inclination to present expert systems as polished
products without much concern for the process by which they

* IN

4

were obtained, especially when the process is informal and
heuristic.

The tuning of Prospector is briefly documented in (Gashnig,
1982]. In a section entitled "Use of Performance Evaluation in
Refining a Model," Gashnig describes a "calibration exercise,"
in which a series of cases given by an expert are run on
Prospector. The expert is asked to provide a strength for each
intermediate hypothesis as well as for the conclusion. The
differences between the strengths given by the expert and those
computed by Prospector are tabulated. Since the differences
over several cases are greatest for only a few hypotheses,
Gashnig (a knowledge engineer for the Prospector expert system)
and the expert concentrate on the rules concluding those
hypotheses.

In the development of the Graduate Course Adviser, the rules
were tuned by a committee during a seminar. Moreover, test
cases were run and data was collected with the intention of
using the results to modify the strengths associated with the
rules. The students who took the tests were asked for
permission to check which courses they actually enrolled in, in
order to compare the schedule chosen by them and their adviser
to the one suggested by the system. An attempt was made to
modify certain numerical parameters in order to improve the
performance of the expert system on a collection of known
cases. This seems to be a typical way to proceed in the
construction of an expert system. (See also [Hayes-Roth et
al., 1983].)

The implicit assumption underlying the process of tuning the
rules is that the rules derived from the expert are correct
except for a (usually small) variation in the strength
parameters.

We cannot expect the team of expert and knowledge engineer
to assign correctly the numerical parameters associated to the
rules. Instead, I propose that these parameters be refined by
experience on concrete test cases of known solution. This
overcomes the bind noted at the end of the previous section.

Knowledge refinement may be considered a middle-ground
apprachbetween traditional knowledge engineering techniques

and automated "learning from examples" approaches [Michalski

approaches to knowledge acquisition that range from statistical
techniques used to derive knowledge directly from data, to
total reliance on the expert. An advocate of this second
apprachwas the late John Gashnig, who used to claim that an

expert system should duplicate as closely as possible the
performance of the human expert interviewed by the knowledge

5

engineer.

Peter Cheeseman argues that one should completely ignore
experts. *Currently, the main bottleneck in building expert
systems is the time necessary for the expert and the knowledge
engineer to find and debug a useful set of rules for a given
domain. In some domains there are no experts, or there is
little agreement among the experts. Even when there is a
suitable expert for a domain, there is considerable evidence
that such experts estimate subjective probabilities (or other
uncertainty measures) with poor accuracy or even produce
inconsistent values. Given these problems [I propose] to
bypass the expert and induce the required information directly
from the data" [Cheeseman, 1984, p.115].

I would argue that ignoring an expert because it is hard to
extract information from him is akin to throwing away the baby
with the bath water. Different workers in the expert system
field have different views of what "knowledge" means [Brodie,
1984]. Still, one pragmatic way to distinguish knowledge from
data is that data can be supplied and maintained by "clerks,"
while knowledge is supplied by "experts"!

This is not to be taken lightly, because there is evidence
that experts structure information differently than novices.

WE The authors of a study entitled *Expertise in Problem Solving"
believe that their experiments show that novices and experts
employ similar search strategies, but using different knowledge
bases [Chi et al., 1981]. (In fact, the novices sometimes seem
to use more sophisticated search strategies.) The study
reports findings on the way in which novices (two students who
have just completed a course in physics) and experts (two
physics professors) solve several physics problems from a
textbook. "A significant focus for understanding expertise is
investigation of the characteristics and influence of
organized, hierarchical knowledge structures that are acquired
over years of learning and experience" [Chi et al., 1981, p.8].
For example, the novices' "knowledge is organized around
dominant objects (such as an inclined plane) and physics
concepts (such as friction) mentioned explicitly in the problem
statement. Experts, on the other hand, organize their
knowledge around fundamental principles of physics (such as
Conservation of Energy) that derive from tacit knowledge not
apparent in the problem statement. An individual's
'understanding' of a problem is dictated by knowledge of such
principles. Hence, during 'qualitative analysis' of a problem,
an 'expert' would 'understand' a problem much better than a
novice, because he 'sees' the underlying principle" [Chi et
al., 1981, p.85].

Expert-derived rules can be considered to form an organized

6

knowledge structure. Usually, they are layered in a hierarchy
corresponding to a hierarchy of concepts.

It is also possible to argue the usefulness of extracting
rules from experts by noting that machine learning techniques,
despite early illusions [Nilsson, 1965] can be applied
successfully only to domains exhibiting a high degree of
structure. This is due in part to pragmatic reasons, in part
to theoretical ones [Gold, 1967]. "Significant learning at a
significant rate presupposes some significant prior structure"
[Minski and Papert, 1969, p.16). Using the structure of rules
and their interconnection makes the knowledge refinement task
feasible in principle.

Much has been written on the way certainty factors are to be
combined. A summary (although not totally up to date) is in
[Prade, 1983]. The work of H&jek is also to be mentioned,
because it is an axiomatic treatment of the subject: he defines
a number of axioms that should be satisfied by any calculus of
certainty factors and derives certain consequences from them
[H&jek, 1982). The works by Politakis and Rada are the ones
that most resemble that described in this thesis.

Politakis has built a program, SEEK, that helps the expert
S refine the rules by applying heuristics that assign credit and

blame to individual rules on the basis of their performance on
a collection of cases. Politakis' work is of an applied nature
[Politakis, 1982; Politakis and Weiss, 1980; 1984). He is more
concerned with building a system that refines a rule base for a
very simple architecture than with questions of method or
complexity. Only one layer of rules (the ones that conclude
about goals) is allowed to have certainty factors, and their
value must be chosen among three (possible, probable, and
definite). The first limitation implies that no calculus of
combining evidence is necessary. It may therefore be
surprising that even such a simple rule base can contain errors
after the individual rules are extracted from experts. Still,
several test cases with sample rule bases were diagnosed
wrongly and SEEK proved useful in correcting the rules. SEEK
was used on rule bases containing from 150 to 1000 rules.

Rada's motivation for his work on weight refinement is
similar to mine. Rada developed an expert system for the
interpretation of computerized axial tomography of the brain.
"The rules that were first developed for CT interpretation did
not meaningfully interact. Of the several problems, one of the
simpler ones stemmed from propagation of weights. What had
seemed a reasonable weight for a rule when viewed in isolation,
proved otherwise when the rules interacted with others" [Rada,

S 1984). Rada's work started and continued independently of
mine. Rada recently became interested in refining the strength

7

of links between concepts in a text retrieval system [Rada et
al., 1985; Forsyth and Rada, 1986]. Rada's algorithms for
weight refinement will be discussed later.

Summary of results

In order to summarize the results, it is unfortunately
necessary to introduce some preliminary definitions. They will
be repeated and expanded upon in chapter 2 ("Modeling").

The thesis deals with the determination and the adjustment
of rule weights. The knowledge-based systems we consider
operate by chaining rules together. For most of our purposes,
a rule has the form IF (P &P &...&P) THEN C WITH ATTENUATION
a, where Pl, P,..',P , a~d E are wvighted propositions and a
(called an nuator is a number between 0 and 1 inclusive.
By weighted proposition, we mean a statement, possibly true or
false, with a certainty factor (CF). CFs have values between 0
and 1, inclusive. A ombinatr is a function from a vector of
CF's to a CF that assigns a single number to the conjunction P1
& P & & & P of premises P of the rule. The most used
fungtion here Rs the MIN funchon. We multiply the combinator
output by the attenuation value a to determine the CF

S associated with the conclusion C of the rule. Many rules may
have the same conclusion; their collective input is merged by
an inLgrator function that defines the CF value associated
with weighted proposition C in the rule system. One function
that is often used as an integrator is MAX. We have also
considered probabilistic addition. Moreover, some of the
results obtained consider the role played by r
fuio. A predicate function takes the CF of a weighted
proposition in the premise of a rule and returns a CF for that
same proposition.

We found it convenient to represent knowledge-based systems
as graphs, called inference nets, composed of basic building
blocks that represent a combinator, an attenuator, or an
integrator. For example, the knowledge-based system composed
of the two rules IF P & P THEN P5 WITH ATTENUATION A and IF
P & P THEN P WITH ITTENATION A2 would be representid as
shown fn Figura 1.1

t41

8

ii i2 13 i4

Figure 1.1 An inference net representing two rules

The certainty factors of weighted propositions P , P , P
and P enter input lines i1 , i i3 P, and i . These aluis aie
procelsed by combinators C ana C9, attenultors A and A , and
integrator I . The output of integrator 11 is thl certainty
factor of weighted proposition P5.

Inference nets realize functions from vectors of CFs to
vectors of CFs; a point in the graph of the function is called
a ts. In the example above, the input vectors have
cardinality 4, while the output vector consists of a single CF;
a test for the net in the example is a pair composed of vector
of input CFs and an output CF.

We assume that the inference net to be built is completely
specified, except for the values of the attenuators. The
designer of the knowledge-based system must determine
(synthesize) or adjust (xfine, if estimates of the values are
given) these values. We consider two ways in which the
designer can learn the values. We call the first model of
learning the complete case and the second model the inmlete
Q=s. In the complete case, all tests are available; in the
incomplete case, only a limited collection of tests is
available.

In the complete case, we postulate the existence of a
perfect expert, i.e., an oracle that outputs the output part of
a test. For example, the perfect expert would be able to
diagnose correctly whatever description of a patient were to be

N

9

presented to it. The patient description is an assignment of
certainty factors to a predetermined set of patient descriptors
(weighted propositions), while the diagnosis is an assignment
of CFs associated with a predetermined set of possible diseases
(also weighted propositions). (For inference nets that are
trees, this set would include only one disease.)

The results for the complete case can be summarized as
follows:

(Cl) It appears easy to synthesize attenuations for t~g with
MIN combinators, MAX integrators, and multiplicative
attenuations. In particular, it is easy for real attenuations
and real certainty factors, within the usual rounding errors
introduced by computer multiplication.

(C2) It is N!P-Hard to synthesize internal attenuations for
&cyclic gra~hs using MIN, MAX, and multiplicative attenuations.

(C3) It is easy to synthesize inut~ attenuations for the same
model as in (C2), in a restricted case.

(C4) It is NP-Hard to synthesize attenuations for .chains. using
MIN, MAX, and some choices of attenuations that are not closede under composition.
(C5) R~esults similar to Cl-C4 hold for probabilistic addition
in place of MAX. In particular, it is easy to synthesize
attenuations for trees with real multiplicative attenuations.

The results for the incomplete case can be summarized as
follows:

(11) Synthesis of attenuations is NP-Hard even for trees with
MIN, MAX, multiplicative attenuations, bounded fan-in to MINs
and fixed depth of the tree. Note that this models well some
typical rule-based expert systems: bounded number of premises
to each rule (independent of the size of the rule base) and
short inference chains, also independent of the size of the
rule base. In particular, if determining attenuations is hard
for this highly constrained model, then finding certainty
factors for expert systems using MIN and MAX surely is hard, if
done from test cases. We have proved that it is NP-Hard to
determine attenuations in this restricted setting.

(12) The result described in Il holds with probabilistic
addition in place of MAX or in addition to MAX.

(13) Approximate attenuation synthesis. Let the allowable
__ range of attenuations be 0 to 1, inclusive. It is NP-Hard to

determine whether the correct attenuations are closer to 0 or

10

O to 1.

(14) Intermediate hypotheses. It is simple to synthesize
attenuat ions if the tests are augmented to contain the
certainty factors of intermediate hypotheses.

(U5) Refinement from almost exact attenuations. Consider a
family of trees as in (Il), with estimates for all
attenuations. Assume that the estimates are closer to the
correct attenuations than an arbitrary given constant. This
refinement problem is NP-Hard for any positive value of this
constant, however small. We have also found a condition under
which a fast algorithm for refinement exists and characterized
the behavior of several heuristic algorithms for the general
case.

(16) Heuristic algorithms. We have tried to exploit the
concept of influential path for the MIN/MAX case for
multiplicative attenuations. In this case, the output of the
net is always equal to the attenuated value of one of the
inputs. We have proved that the problem of setting
attenuations remains NP-Hard even when an influential input is
specified for each test.

A different organization of results is used for the
summaries in Figures 1.2, 1.3, and 1.4. The first two figures
outline the results for the synthesis of rule strengths; the
third one summarizes the results obtained for the refinement of
rule strengths.

11

complete case incomplete case

trivial but trivial but

chains NP-Complete when NP-Complete when
attenuations are not attenuations are not

closed under composition closed under composition

NP-Complete
- even when approximate
trees fast algorithm given ves on ardire
-' values only are desired

for the attenuations

fast algorithm given for
determination of one input NP-Complete

attenuation with small
acyclic CF alphets; even when approximateCF alphabets; values only are desired

graphs determination of internal value aendesired
attenuations is NP-Complete

Figure 1.2 Summary of results on synthesis, MIN/MAX

12

complete case incomplete case

trivial but trivial but

NP-Complete when NP-Complete when
attenuations are not attenuations are not

closed under composition closed under composition

NP-Complete

trees fast algorithm given even when approximate
Cvalues only are desired

for the attenuations

fast algorithm given for
determination of one input NP-Complete

acyclic attenuation with smallCacaphabts;even when approximateCF alphabets;

graphs determination of internal values only are desired
for the attenuations

attenuations is NP-Complete

Figure 1.3 Summary of results on synthesis, MIN/p+

9

A&-*~ ~

13

MIN/MAX MIN/p+

principal paths NP-Complete NP-Complete
given for
each test

almost correct NP-Hard
estimates given NP-Hard (conjectured)

almost correct NP-Hard

C estimates given, NP-Hard (conjectured)
constant increment

almost correct NP-Hard
estimates given, NP-Hard (conjectured)

approximation sought

slow algorithmswitch setting fast algorithm given; conjectured

given given to be NP-Hard

Figure 1.4 Summary of results on refinement

All.

14

Organization of the thesis

The reader looking for an executive summary could limit
himself to reading chapter 1 ("Introduction") up to this
paragraph for a presentation of the problem and the results,
then read the first section of chapter 10 ("Conclusion") for
the author's interpretation of the results.

Chapter 2 ("Modeling") describes the model of expert system
used throughout the thesis. It also contains a definition of
the two learning models used. Chapter 3 ("Test Generation")
describes a problem that is in many ways simpler than synthesis
or refinement and solves three variants of it to show how
different model parameters affect the complexity of solutions.
In chapter 4 ("The Complete Case"), the problem of synthesizing
attenuations from perfect experts for inference trees is
solved. Chapter 5 ("The Incomplete Case") deals with
synthesizing attenuations from tests in inference trees.
Chapter 6 ("Chains") considers the problem of synthesizing
attenuations for inference chains, when the attenuations are
not closed under composition. Chapter 7 ("Graphs") deals with
the synthesis problem for inference graphs, in a very
restricted setting. Chapter 8 ("Approximations and
Intermediate Values") extends some of the results of chapter 5
to the case in which approximate attenuations are acceptable
and discusses three different learning models, where cases are
enriched with information on intermediate hypotheses. Chapter
9 (wRefinement") considers the problem of attenuation
refinement.

The results listed in the previous section are contained in
the chapters (and sections, where applicable) of this thesis as
follows: (Cl) chapter 4, section 3; (C2) chapter 7; (C3)
chapter 7; (C4) chapter 6; (C5) chapter 4, section 5; (Il)
chapter 5, section 2; (12) chapter 5, section 3; (3) chapter
8, section 2; (14) chapter 8, section 3; (15) chapter 9,
section 3; (16) chapter 9, sections 2, 4, and 5.

4L

CHAPTER TWO

MODELING

Introduction

The main purpose of this chapter is to define the model of
expert system and the learning models that will be used
throughout this thesis.

There does not seem to be a single accepted definition of
what an expert system is. One extreme view is that "an expert
system is simply an application program for which there are
many tool kits" [Stonebraker, 19841. Others would argue that
an expert system is just a program that simulates a human
expert. Therefore, they list the characteristics, such as
performance and ability to explain, that are necessary to
expert behavior. Others would consider the programs that are
called "expert systems" by most researchers and extract their
common features, in order to characterize them. For example,

~ Hayes-Roth [1984, p.264] lists the following "characteristics
common to expert systems: they solve very difficult problems as
well as or better than human experts; they reason
heuristically, using what experts consider effective rules of
thumb; they interact with humans in appropriate ways, including
the use of natural language; they manipulate and reason about
symbolic descriptions; they function with erroneous data and
uncertain judgemental rules; they contemplate multiple
competing hypotheses simultaneously; they explain why they are
asking a question; they justify their conclusions." However,
these are behavioral characterizations, whereas this chapter is
concerned with modeling from a structural point of view; at
this level, precision is possible.

The second section introduces the model of expert system and
a graphical notation, and it contains a discussion of the
coverage afforded by the model. The third section defines the
synthesis and refinement problems and the two learning models
that will be studied in the thesis.

A model of expert systems

Rule-based systems' are the only ones considered here. (See
[Nau, 1983] for a classifications of expert systems that

4*
15

16

includes other organizations, such as frame-based ones. Strong
rule-based components are present also in the most
sophisticated commercially available expert system shells.)

The expert systems that we consider operate by chaining
rules together. The specific order of rule chaining can be
shown to be irrelevant, for most of the results we obtain, but
backward chaining is always considered in the examples. A rule
has the form IF (P1 & P & .. & P) THEN C WITH ATTENUATION a,
where P ,, ... P ind C are wRighted propositions and a is
a function from realR to reals. A weighted proposition is a
statement, possibly true or false, with a numeric weight,
called a certainty factor (CF), that reports the degree of
belief that the associated proposition is true. A ombinatr
is a function from vectors of CFs to a CF that assigns a single
number to the conjunction P & P & ... & P of premises of the
rule. An JLeuator is a fnctign that mapR the CF of the
premises of the rule (as given by applying the combinator) to
the CF of the conclusion of the rule. Many rules may have the
same conclusion; their collective input is merged by an
integrar function that defines the CF value associated with
weighted proposition C in the rule system. To complete the
definition of the rule form described above, we introduce
predicate functions. A predicate function tL.s the CF of a
weighted proposition in the premise of the rule and returns a
CF for the same proposition.

It is convenient to represent knowledge-based systems as
graphs, called inference nets, composed of blocks representing
their components. A typical basic subgraphs representing a
rule with three weighted propositions is shown in Figure 2.1,
where the oval, circle, square, and lozenge represent an
integrator, an attenuator, a combinator, and a predicate
function, respectively.

p°

17

Figure 2.1 Graphical representation of a rule

Example 2.1

The knowledge-based system composed of the two rules IF P1 &
P THEN P WITH ATTENUATION A and IF P & P4 THEN P WITH
A TENUATIN A2 would be repreiented as Rhown in Figuie 2.2.

V.. j- .N&~ IAi

18

Al A2

C1 C2

ii i2 i3 i4

Figure 2.2 An inference net representing two rules

In this example, there are no predicate functions. The
certainty factors of weighted propositions P1 P, P 3 ' and P4
flow from the input lines i , i, i , and i4 thrgugh
combinators CI and C,, attenuators a and A4 , and integrator
I. The outp1t of i tegrator I is ihe ceriainty factor of
wiighted proposition P5*

(End of example)

Example 2.2

In this example, we represent a small portion of the rule
base of the Graduate Course Adviser [Valtorta et al., 1984].
The rules (translated into English) that are represented are:

IF the student expresses interest in the analysis of
algorithms
THEN the student in interested in theory WITH
ATTENUATION .7

IF the student had math as a major
THEN the student is interested in theory
WITH ATTENUATION .8

19

IF the student is interested in theory
AND the student expresses interest in mathematics
THEN the student should take MTH251
WITH ATTENUATION .9

The graphical representation is shown in Figure 2.3.

.0

.9

iti

1C il

.74)

i2 i3

Figure 2.3 A small portion of the rule base of the Graduate

Course Adviser

In this example, the CF flowing on i is the CF for the
proposition "the student expresses inteiest in mathematics."
The CF flowing on i is the CF for the proposition "the student
expresses interest in the analysis of algorithms." The CF
flowing on i is the CF for the proposition "the student had
math as a ma3or." The CF flowing on h1 is the CF for the
proposition "the student is interested in theory." The CF
flowing on o is the CF for the proposition "the student should

I

20

0
take MTH251." Note that predicate functions and integrators
that are the identity function are not indicated in the
picture.

(End of Example)

For the same rule base, one can have different nets
depending on the facts and the information provided by the user
only if variables appear in the rules.

The graphical representation is analogous to that described
by Slagle [1984]. Also, "model diagrams" are the preferred way
to represent Prospector's rule bases [Reboh, 19811. The major
commercially available expert system shells, such as KEE
[Richer, 1986] heavily use graphics to represent their
knowledge base. However, the graphs are used to display
interconnections of objects (e.g., frames, units) rather than
rules.

There are rule-based expert systems that cannot be presented
graphically as indicated. An example is Ponderosa. "Ponderosa
represents a departure from current plausible inference systems
because, although it still deals with uncertain assertions and
relations, it does not attempt to propagate validity measures

A2L of any kind [italics mine]. Instead, it follows the approach
of trying to identify internally consistent subsets of the
information given to it. The merit of any such division is
then established as a function of the validities of the
assertions that were not included" [Quinlan, 1983b, p.141]. In
fact, the graphical representation is suitable only to
represent truth-functional expert systems, as defined by
Ruspini [1982, p.88). A rule-based expert system is truth-
functional if the certainty factor of an hypothesis depends
only on the certainty factors of premises in rules that
conclude the hypothesis. Ponderosa is not a truth-functional
expert system, because the certainty factor associated with a
hypothesis depends on the strengths of the rules that were not
used to conclude the hypothesis.

Different choices for combinators, attenuators, integrators,
and predicate functions allow one to model most existing rule-
based expert systems.

Examle2.3

With the choice of min and max for combinators and max for
integrators, one can model the systems that use fuzzy-set
theory formulae, such as AL/X [Quinlan, 1983a, p.258], and
EXPERT [Weiss and Kulikowski, 1979].

(End of example)

'S

.

21

Ex=mle 2.4

The choice of min and max for combinators and probabilistic
addition for integrators lets one model MYCIN-like systems,
like MYCIN itself and the GCA. The probabilistic addition (or
probabilistic sum) of a and b (both being between 0 and 1) is
a~b-ab and is indicated a[p+]b.

(End of example)

In almost all expert systems, the certainty factor
associated to the conclusion of a rule is given by the CF of
the premise multiplied by a coefficient between 0 and 1. These
coefficients will be called w. In the ideal case of real
weights and real CFs between 0 and 1, these weights have the
property of being closed under composition: the same
attenuation that can be obtained by applying a sequence of
attenuations can also be obtained by applying a single one of
value equal to the composition of the ones in the sequence.

Synthesis. refinement, and learning models

We view the inference net as the realization of a mapping
between a vector of certainty factors (on the input lines of
the net) and a vector of certainty factors (on the output lines
of the net). The function to be realized is unknown to the
designer of the expert system. The knowledge acauisition
process is the process of discovering this function. The
knowledge engineer has several ways of discovering it, such as
interviews with experts (i.e., use of knowledge elicitation
techniques), generalization from cases of the problem to be
solved, and analysis of protocols of expert consultations.

In this dissertation, we assume that only the attenuation
values have to be discovered; the net is given. We consider
mainly two problems, the syntheis problem and the rfinement
problem. In the synthesis problem, no estimates are given of
the values of the attenuations. In the refinement problem,
estimates of the attenuations are given and the designer must
adjust the given values. Both can be considered to beinstances
of a learning problem.

Two main learning models are considered. Before describing
them, we introduce a definition.

Definition 2.1 A test is a pair (input part, output part),
where i is a vector of CFs corresponding to the inputs
of the inference net and g RaL t is a vector corresponding
to the outputs of the inference net.

6V......

22

Only inference nets with a single output will be considered
almost exclusively. For simplicity, in this case output part
is considered a single value rather than a singleton vector.

The first model of learning is called the complete case and
the second model the incomDlete case. In the complete case,
all tests are available; in the incomplete case, only a limited
collection of tests is available.

In the complete case, we postulate the existence of a
Derfect expert, i.e., an oracle that outputs the output part of
a test, when given the input part of a test. For example, the
perfect expert would be able to diagnose correctly whatever
description of a patient were to be presented to it. The
patient description is an assignment of certainty factors to a
predetermined set of patient descriptors (weighted
propositions), while the diagnosis is an assignment of
certainty factors associated with a predetermined set of
possible diseases (also weighted propositions). For inference
nets that are trees, this set would include only one disease.

CHAPTER THREE

TEST GENERATION

Introduction

After defining and discussing the model of expert systems in
the previous chapter, we consider the synthesis and refinement
problem for various expert systems, i.e., for various choices
of the model parameters. But a problem that is in various ways
"simpler" than knowledge refinement will be introduced first.
The problems that follow are motivated by a desire to start
from simpler, although not necessarily useful, situations, in
order to gain understanding.

The test generation Droblem

The generic test generation problem consists of finding
tests that are handled correctly by a given, completelye specified, rule base.

Several specific cases of the test generation problem will
now be considered. The results will illustrate how different
selections of net topology, allowable attenuators, and
allowable predicate functions affect the complexity of problems
involving functional rule-based expert systems.

Decision problems will be described following the format
defined by Garey and Johnson [1979, p.18], which consists of
three parts: a nAMe, a generic instance of the problem in terms
of various primitive components, such as graphs and numbers,
and a yes-no guestion asked in terms of the generic instance.
The generic instance will be referred to as the instance, for
short.

Problem name. Test generation, acyclic graph with two
predicate functions (TGN).

Instance. Network topology is an acyclic graph with a
single goal. Integrators are two-input max functions.
Combinators are two-input min or two-input max functions.
Certainty factors are 0 and 1. (I.e., the CF alphabet is
(0,1).) Attenuations are identity (mapping 0 into 0 and 1 in~to

23

24

1). Predicate functions are identity (mapping 0 into 0 and 1
into 1) and complementation (mapping 0 into I and 1 into 0).
(This models, for example, the predicate function thoughtnot
used in MYCIN.) Therefore, the attenuators are not
monotonically non-decreasing, but they are closed under
composition. The instance is a net satisfying the criteria
described above.

Question. Is there an input test vector such that the

output of the net is 1?

Theorem 3.1 TGN is NP-Complete

Proof (1) The problem is in NP, because it takes only
polynomial time to run a test through a tree, i.e., to compute
the output CF from the input CF's, and the number of tests is
exponential in the number of input nodes and therefore no more
than exponential in the input size. (2) Boolean
satisfiability can be reduced to TGN. Consider any formula
that uses OR, AND, and negation as logical connectives.
Represent the resulting formula as an acyclic network. This is
a relatively standard way of representing formulas, and the
conversion from list format to network format can be done
simply in polynomial time. For example, -U(A&B)vC] (where "-"

stands for "not") is represented as the network in Figure 3.1.
The network has the properties described above, when OR's are
interpreted as integrators or combinators, AND's as
combinators, and NOT's as predicate functions. Each input to
the net corresponds to a variable in the formula. An input to
the net produces an output of 1 if and only if the original
formula is satisfiable.

(End of proof)

I. WaI

25

A B C

Figure 3.1 Network representing -[(A&B)vC]

Note that the result holds even if the instance is
generalized in one or both of the following two ways: (1) more
than two inputs are allowed for combinators and integrators;
(2) only MIN is allowed as an integrator.

Problem name. Test generation, tree (TGT).

Instance. The network is a tree. The choices for all other
parameters are the same as in problem TGN. The instance is a
net satisfying the above criteria.

Question. Is there an input part such that the output of
the net is 1?

Trm3.2 TGT can be solved in constant time.

Proof The answer to the question in TGT is always "yes."
Consider each path from the root to a leaf independently and

I~ i

26

set the input value of the input to the leaf to 0 if there is
an odd number of attenuations having value "complement" on the
path; set the input to 1 otherwise.

(End of proof)

Problem name. Test generation, acyclic graph, no predicate
functions (TGM).

Problem instance. In TGM, no predicate functions are
available. (In other words, the only available predicate
function is identity.) All other parameters are the same as in
TGN.

Ouestion. Is there an Input part such that the output of
the net is 1?

T TGM can be solved in polynomial time.

Proof The following polynomial-time algorithm solves TGM.
Propagate the input vector of all l's through the net. If the
output is 1, the answer is "yes," otherwise it is "no."

(End of proof)

TGM can be generalized to different CF alphabets,
combinators, and integrators. Theorem 3.3 keeps holding as
long as the only predicate function is identity and the
attenuators are monotonically non-increasing.

This chapter has shown the effect of net topology and
allowable attenuators and predicate functions on the complexity
of test generation.

X

CHAPTER FOUR

THE COMPLETE CASE

Introduction

In the complete case, we model an expert as a perfect
expert, as defined in Section 6 of Chapter 2. The name,
complete case, stems from the fact that the input/output
function to be realized by the rule-based system is completely
available, rather than being available only through samples.

All results in this chapter concern trees. The first
section shows that only a fraction of the attenuations in a
tree with MIN/MAX attenuators and combinators and attenuators
that are closed under composition can be set independently. An
algorithm to synthesize the attenuators in the case in which
they are multiplicative is then given. The second section
presents an algorithm to redistribute the attenuators so that
they are as close as possible, according to a suitable metric,
to given ones--typically, expert-given ones. The third section
contains an algorithm to synthesize attenuators in trees with
MIN combinators and probabilistic sum integrators.

The more general (and more difficult) problem of computing
attenuations for graphs is considered, in a very restricted
case, in Chapter 7.

Independent attenuations

This is a case in which only a fraction of the attenuations
are independent of each other. It is useful to know how many
attenuations can be set independently, in order to simplify
knowledge refinement and to evaluate the Rower of a network,
i.e., the number of different input vectors that produce
different outputs.

Definition 4.1 A binary tree is said to be F l if for
some integer k, every vertex of depth less than k has both a
left child and a right child and every vertex of depth M+js a
leaf. A complete binary tree of height k has exactly 2 -1
vertices [Aho et al., 1974].

27

28

Theorem 4.1 Let an inference tree of depth d be given.
(See Figure 4.1.) Let gl, ..., g be choice functions, like
min and max. Let f,'I" f , be Pe corfesponding attenuations.
For each i/o pair, (X ., x), o), where i is the i/o
pair index, at least oni of t~e f~ilowing p constraints holds:
f(f2(f3- (fd(io)).')=o , where 2 Jk=Jk+l or 2Jk+'=jk+la~d 1=1.3** jd jd..

Proof

The output of the tree is the output of f1 "

The proof is by induction on the depth of the tree.

Basis The output of leaf attenuations is fj(ij), where j is
a leaf index.

Inductive step Assume that the output of all attenuations
at depth d-n, where d is the depth of the whole tree (here, the
fact that the tree is complete is used), is of the form
f (f (f (i where 2j =j or 2j+1 . Then

oput ofnatlnuations at depth W-i ("oneJle + up the
tree") is f.0 (f ... (f (i)...), where 2j-=J or 2j +1
This is true begluse gn, Re choice functi8n iorrespndinto
fjn outputs either f9 Cf (i... or

f2jO+l(." (fjnl Jn)'.. in in
(End of proof)

The proof carries over, with obvious modifications, to
incomplete trees, but it has been described only for complete
trees, for simplicity.

.i

29

fi

g2

Q f3

g2 1gk3

k19k2 ~kp k

X1 x2 x3 x4 x 2p1 x2

Figure 4.1 Complete inference tree of depth d, with p

inputs

Definition 4.2 An inout attenuation is an attenuation
closest to an input of an inference net. All attenuations that
are not input attenuations are internal attenuations. The
attenuations that are closest to the outputs of the net are
output attenuations. In the case of trees, input attenuations

Ut.'. -~ 'C)~

30

are also called leaf attenuations.

If the attenuations are closed under composition, this
result implies that in a MIN/MAX tree, any i/o function that
can be obtained by setting all attenuation independently of
each other can also be obtained by setting the internal
attenuations to identity and setting the input attenuations
independently.

This can be stated as follows: all tests that can be
realized by any assignment of attenuations can also be realized
by an assignment of attenuations with the following properties:

(1) the leaf attenuations are the composition of the
attenuations at the (unique) path from the leaf to the root;

(2) all other attenuations are the identity function.

This result can be extended to the case in which the
combinator or integrator function in the tree is a linear
function. The case in which the linear function is addition
throughout the tree will be illustrated first. The same
numbering scheme as in Figure 4.1 will be used.

Theorem 4.2

Let an inference tree of depth d be given. (See Figure
4.1.) Let g , be the function sum. Let f , ,f be
theiattenuajons *oesponding to the sums. For 1ach i/ Ppair,
((x 1 ...,x),o), where i is the i/o pair index, the
foll wing constraint holdf:

f (f (f ... (f. (i))...)=o , where the sum is over
all poslibl dltinctighoigs of 2',3..,d satisfying jl=l,

2 ~or 2k k+1 fJ'3 "J
Jk=Jk+l o j+l=j

~Proof

The output of the tree is the output of f1 " The proof is by
induction on the depth of the tree.

Basis The output of leaf attenuations is f (i), where j is
a leaf index.

Inductive step Assume that the output for test i of
subtrees whose root is at depth d-n, where d is the depth of
the whole tree, is of the form

iS(f jl(fj 2--.(f jin U)),

where the sum is over all possible choices of j , j2,-'',
satisfying 2j =j+ 1 or 2j +1=j Then the output of the

subtrees whost r~ot is at-feptV -n-I ("one level up the tree")
is (f(f (. .. (f. (ij)...), where the sum is over all
possible chdiceg of J01 j1 , 32,..., Jd satisfying 2 Jk=Jk+l or

31

This is true because of the distributive property
of f's sum: (f +f)f = f +f fk and of the fact that
f 's are closed unde, cJmp.sitin, fifk = fi, for some k for
every i, j.

(End of proof.)

Examle41

Consider the simple tree in Figure 4.2 and the tests
expressed in the table below.

i1 i2 i3 i4 0

T 3 1 4 2 1

T2 4 4 3 3 2

T3 3 3 4 4 2

4.

32

(a

Figure 4.2 An inference tree with sum integrators and

combinators

The tests constrain the attenuations in the following way:

(TI) [(3d+e)b+(4f+2g)c]a = 1
(T 2) [(4d+4e)b+(3f+3g)c]a = 2
(T 3) [(3d+3e)b+(4f+4g)cla = 2

That is:

(T1) 3dba+eba+4fca+2gca = 1
(T 2) 4dba+4eba+3fca+3gca = 2
(T 3) 3dba+3eba+4fca+4gca = 2

Since d and e are always multiplied by ba, and f and g are
always multiplied by ca, this system has a solution if and only
if the following one, where a=b=c=l, does:

33

(T 1) 3d+e+4f+2g = 1
(T 2) 4d+4e+3f+3g = 2
(T 3) 3g+3e+4f+4g = 2.

(End of example.)

Theorem 4.2 holds with obvious modifications even when
linear functions other than sum are used, i.e., it holds when
functions g4 are used such that f (g (f ,f3))=g1 (f f.,ff f3)
Note that te linear functions usid o flot need to 1bi'te same
throughout the tree. For example, sum may be used as an
integrator and subtraction as a combinator. This last
statement will be illustrated with a simple example.

Example 4.2

The tests in this example are the same as in Example 4.1.
The network is illustrated in Figure 4.3.

* .

.A *-

IA

34

a

Figure 4.3 Inference tree with sum integrators and

subtraction combinators

The tests constrain the attenuations in the following way:

(TI) [(3d-e)b+(4f-2g)c]a = 1
(T2) [(4d-4e)b+(3f-3g)c]a = 2
(T3) [(3b+3e)b+(4f+4g)c]a = 2

That is:

(T1) 3dba-eba+4fca-2gca = 1
(T 2) 4dba-4eba+3fca-3gca = 2
S(T3) 3dba-3eba+4fca-4gca = 2

As in Example 4.1, since d and e are always multiplied by
ba, f and g are always multiplied by ca, this system has a
solution if and only if the following one, where a=b=c=l, does:

35

(T,) 3d-e+4f-2g = I
(T 2) 4d-4e+3f-3g = 2
(T3) 3g-3e+4f-4g = 2

(End of example)

Synthesis of attenuations: MIN/MAX case

Now, consider the task of synthesizing multipliers (a
special kind of attenuators) from a complete test set.

Definition 4.3 A path is sensitized if the net output is
equal to the input to the leaf of that path attenuated by the
attenuations on the path. (Recall that one can consider only
the leaf attenuations as having value different from 1.) A
sensitized path is called an influential Rath or a l
R jh. The input to a principal path is called a PrT.nial1
inut or influential input. (Note that in the case of ties
there can be more than one principal paths and inputs.)

Whether we can always sensitize a path in the complete case
depends on the model we use. To sensitize a path (in a tree, a
branch), the values entering a MAX box must be "low enough" to
let the value from the sensitized branch go through; the values
entering a MIN box must be "high enough" to let the value from
the sensitized branch go through. (See Figure 4.4.) O's are
low enough values, but there may not be any value which is high
enough, if an attenuation on a non-sensitized branch is 0. We
can test for a path that cannot be sensitized by switching the
input to the path from highest (1) to lowest (0). If no change
occurs, a 0 is coming from another path in input to a MIN box,
i.e., the path cannot be sensitized. But it may take an
indefinitely long time to find an input which is low enough to
sensitize a path when the outcome of the test is that a path
can be sensitized, because the attenuation on another branch
may be arbitrarily small.

* '.1 .- , , . , . , ,, . . . -. . . , . .., . . .

36

, 0

MIN

highest possible
value...

path to be path to be
sensithized desensithized

.i.e., 1 as input

Figure 4.4 Sensitizing a path

This problem disappears if there is a constant Min such that
all input CF's are greater than it. This seems to be
practically an acceptable limitation. More precisely, the
range of input values has a min value, but no such limitation
is put on the domain and range of the attenuators: the
attenuators can produce values that are smaller than the min
input value. This choice is motivated by the fact that input
values, which are provided by people, or possibly sensors, are
unlikely to be arbitrarily low, whereas it may be useful to
allow attenuations, which, to some extent, could be
synthesized, to have real-valued domain and range.

I

37

MIN

lowest possibl highest possible
value ... value...

path to be path to be
sensithized desensithized

.i.e., lowest possible CF ... i.e., 1 as input

Figure 4.5 Sensitizing a path, when there is a lowest input

CF

An algorithm to synthesize multipliers in a tree can now be
given, for the case in which the condition summarized in Figure
4.5 holds. The algorithm uses exactly one test for each
attenuation to be sensitized. The test sensitizes the path on
which the attenuation lies. The value of the attenuation is
set by dividing the test output by the input to the path.

It is simple to modify the algorithm for the case in which
th e following non-identity predicate functions are present: 1
imapped to Min and Min is mapped to 1, and intermediate

values are mapped in such a way that, if a>b, a is mapped into
a smaller value than b.

Algorithm to redistribute attenuations

Once weights have been determined, by using the algorithm in
the previous section, which synthesizes all weights at the

38

leaves of a tree, they should be redistributed to the internal
nodes, to be close to the attenuations given by the expert.
This is desirable to please the expert, who is likely to prefer
editing rules close to the ones elicited from him, rather than
rules that perform correctly on training cases, but which, on
an individual basis, are not recognizable. This is consistent
with the basic, although hardly formalizable, principle, that
rules constitute a form of knowledge organization, which should
not be disposed of lightly, lest we lose anything to refine.

edistribution can be achieved with process truncation error
O(d), where d is the maximum of the errors in the weights to
be refined, by linearizing the optimization problem "minimize
the Euclidean distance between the expert-given weights and a
set of correct ones," and solving the linearized problem by
quadratic programming.

While quadratic programming is NP-Complete [Sahni, 1974],
the quadratic programs that we consider here are convex, and
therefore they can be solved in polynomial time [Kozlov et al.,
1979]. However, it is not suggested that Kozlov, Tarasov and
Kachiyan's algorithm be used in practice. The common algorithm
[Gottfried and Weisman, 1973, p.214] reduces the quadratic
program to a set of linear ones, but only exactly one of them
must be solved unless the correct attenuation for some rule is
either 0 or 1. This can certainly be considered a degenerate
case, and therefore the common algorithm can be used with
confidence.

To make the above discussion more precise, consider that the
leaf attenuations have been exactly determined. Say that there
are p leaves in the tree and that the depth of the tree is m.
This means that there are p products of m attenuations set
equal to the leaf attenuations: p multiplicative constraints of
m variables each. The cost function is the distance between
correct attenuations and expert-given ones. Rewrite each
attenuation as the sum of the expert-given attenuation plus an
increment: xj = 2L + d Multiply the attenuations on the same
branch and dtop tAe teims that are not constant or linear in
the d I's. We now have a quadratic program- linear constraints
and q;adratic cost function (the sum of d). Of course, it
must be that 0 <= x + d <= 1. The follwing example
illustrates this pr~ceduie.

Exampie 4.3

Consider the tree shown in Figure 4.6

V r% -

39

x2 x3

Figure 4.6 An inference tree with redundant attenuators

Assume that it has been determiped that cthp correct valtes
of the leaf attenuations are x =x A , x5=x15 , x j=x", x=
(and all other attenuationi ha4S $al~e l). Th e psrt-given
attengations have value x1 , x2 , x3 , x4 , x5 1, x7 We set
Xi=X i +d i ; therefore:

x 4 c=(x4 e+d 4 1 (X2 e+d 2 1 (xle+d1 e

x4ex2exe+d4x2el e +d 2x4exe+d1X4eX2e+o(d , where

d-max(dl,d 2 d3 d 4 , d5 ,d 6 d 7).

Si~ilarcequations involving xc
XL x 7 x can be written. Ign~ring the O(d 2) terms, the
mtnimization problem to solve in order to determine the correct
attenuations that are closest to the expert-given ones is:

40

d 4 x 4 ex 1 e+d 2 x 4 ex 1e+d 1 X4 ex 2 e (X4 cxexex e) =0 (g, (di) =0)

(1) d5 x 2 ex 1 e+d2 x 5 ex 1e+dIx 5 ex 2 e - (x 5 cx5ex 2 ex1 e)=O (g2 (di)=O)

d6x3 x1 e+d 3 x6 exI e+d1 X6ex 3e-x 6c-x6ex3exIe)=O (g 3 (di)=O)

d7 X3exIe+d 3x7 ex1 e+dX 7 ex3e-(x7 c-x7ex 3exe)=O (g4(di)=O)

x1e <= d 1 <= 1-x 1 e

(2) -x2e <= d2 <= 1-x2e

x7e <= d7 < 1-x 7 e

mn d 2 2 +2
min z - d1 + d2 + ... + d7 2

Since we assume that the expert-given attenuations are close to
the correct attenuations, it is likely that the inequality
constraints labeled (2) are not active, i.e., the solution of
the quadratic program with constraints (1) also satisfies
constraints (2). In this case, the optimum solution can be
found by using the method of Lagrange multipliers. The
Lagrangian is

f(di) = z(di) + Il(di) + ... + Ig(d

Since the set identified by the equality constraints and
z(d) are both convex, the optimum solution is obtained by
setting to zero the partial derivatives of f with respect to
each of the d's and the l's. Since f(d.) is a quadratic
function, this latter system is a syste of linear equalities.

If the expert-given attenuations are not close enough to
correct attenuations, the solution found as indicated above
will not satisfy the inequality constraints (2). In this case,
one or more of the inequalities constraints must be active.
The optimum solution can be found by trying out combinations of
active constraints. Of course, this procedure takes time
exponential in the number of inequality constraints (and
therefore in the number of attenuations.) However, a
polynomial run-time algorithm exists for convex quadratic
programming. The reader is referred to (Kozlov et al., 1979]
for further details.

41

(End of example.)

It may be that the error introduced by linearizing is small
enough that it is acceptable to compensate it by multiplying
each leaf attenuations by the product of the expert-given
attenuations on the branch ending at that leaf divided by the
product of the correct attenuations. If this is not the case,
that is the error introduced by linearizing is too big, the
linearization process can be iterated.

Synthesis of attenuations: MIN/probabilistic sum case

Let a[p+]b mean the probabilistic sum of a and b. Consider
trees composed of building blocks as in Figure 4.7.

MIN

Figure 4.7 Subgraph for the probabilistic sum case

Let there be an oracle that can give the output part of a
test when given the input part of that test, for any test.
Attenuations are multiplicative between 0 and 1, and the

42

'minimum non-zero input allowed (min) is known. (This last
requirement is based on the observation made for the MIN/MAX
case that it makes it simple to determine whether the
attenuations on a path can be synthesized, as will be made
precise in the following lemma.) Note that, while in the
MIN/MAX case only approximately half of the attenuations in a
tree can be assigned values independently, no such result holds
for the p+/MIN case.

Lema 4. If a path is sensitizable, it is sensitizable by
a test with min as path input, O's as inputs to other branches
entering the path at p+ boxes, l's as inputs to other branches
entering the path at MIN boxes.

Proof The path is sensitized with respect to the p+ boxes,
because 0[p+]e = e, for all e >= 0. Since the minimum non-0
value at an input CF is min, the choice of min as input to the
path to be sensitized provides for the smallest non-0 value in
the path anywhere, in particular at the input to MIN boxes. On
the other hand, because of monotonicity, l's at the inputs
corresponding to branches meeting the path we want to sensitize
at MIN boxes maximize the CFs at these boxes. (In Figure 4.8,
for example the leftmost path is sensitized.)

I

t I,

43

/MIN

min min min

Figure 4.8 Sensitizing a path with probabilistic sum

(End of proof of lemma)

The proof of the Lemma describes a procedure to verify
whether a path is sensitizable or not and to construct a test
that sensitizes the path, if it exists, which will be used in
the algorithm to synthesize attenuations in a MIN/p+ tree.
Call this procedure method A. The following procedure is the
other main building block of the algorithm to synthesize
attenuations.

-9 " S ,. s '

44

Method Consider an attenuation, say a, in a tree built of
the building blocks in Figure 4.7.

Assume that the following three tests exist: (a) a test that
makes influential two of the paths through a p+ box just below
a and such that the two CFs entering the p+ box are the same as
those obtained in tests (b) and (c); (b) a test that makes
influential the left one of the two paths mentioned for test
(a); (c) a test that makes influential the right one of the two
paths mentioned for test (a).

When the input part of test (b) is applied, the CF value
exiting attenuation a is k = ab, where b does not depend on a.
When the input part of tesi (c) is applied, the CF value
exiting attenuation a is k = ac, where c does not depend on a.
Similarly, when test (a) i applied, this value is
k - a(b[p+]c). But b[p+]c = b+c-bc = k /a+k2 /a-k1k 2 /(aa).
T~erefore, test (a) implies that k +k 2-b/a = k a can be
computed from this.

Method A can be used to determine whether tests (a), (b),
and (c) exist, and, if they do, to compute them.

(End of method B)

It is now possible to describe an algorithm that synthesizes
all attenuations in a MIN/p+ tree.

Algorithm 4.1

If the test input "all l's" produces output 0, set all
attenuations to 0 and stop.
For 1=1 to depth of the tree, do

for att=l to number of attenuations at level 1 do
if there are two paths through att that (a) go through
the same p+ box, (b) are both influential, (c) the
bundle obtained by joining them is influential, then

synthesize attenuations using Method B
else if there is one path through att which can be made
influential, then

set att to satisfy a test that synthesizes the
path, using Method B to construct such a test
set all attenuations in the subtree rooted at
att to 1

else (if no path through att can be made influential)
set att and all attenuations in the subtree
rooted at att to 1

Example 4.4

45

Consider the simple inference tree in Figure 4.9. In this
example, it is assumed that no attenuations have value 0, i.e.,
all paths can be made influential. It is shown here how to
compute a4 and a .

0

a4

MI

il i2 i3 i4 i5 i6 i7 i8 i9 i10 I
Figure 4.9 Example of use of algorithm 4.1

To synthesize a4 use the following test inputs:
il I 2 i 3 4 i5 i 6 i7 i 8 i 9 il0

(1) min 0 1 1 0 0 1 1 1 1
(makes path i1 to o influential)

(2) 0 0 0 0 min 1 1 1 1 1
(makes path i5 to o influential)

46

(3) min 0 1 1 min 1 1 1 1 1
(makes the bundle composed of paths i to o and i to o

influential) (Tests (1), (2), and (3) corresp~nd to tests (b),
(c), and (a) of Method B, respectively.)

The oracle gives values kl, k2, k for the output
corresponding to test inputs (1), (2 , and (3), respectively.
According to Method B, a can be computed by solving the
following system of ineq~alities:

a4b=k1
a4c=k2
kI+k 2 -bc/a4=k3

and therefore

-3a4= [(k 1 k2) / (k1 +k2 -k 3)]

To synthesize a1 , use the following test inputs:

(1) min 0 1 1 0 0 1 1 1 1
(makes path i1 to o influential)

(2) 0 min 1 1 0 0 1 1 1 1
(makes path i2 to o influential)

(3) min min 1 1 0 0 1 1 1 1
(makes the bundle composed of paths i to o and i to o

VO influential) (Tests (1), (2), and (3) corrispond to teits
(b), (c), and (a) of Method B,

respectively.)

The oracle gives values k4, k5, k for the output
corresponding to test inputs (4), (5 , and (6), respectively.
According to Method B,

-3a1 = 1/a4 [(k 4 k5) (k 4 +k5 -k 6)]

(End of example)

CHAPTER FIVE

THE INCOMPLETE CASE

Introduction

In the incomplete case, we model sample cases by tests,
defined in Section 3 of Chapter 2. The name, incomplete case,
stems from the fact that the input/output function to be
realized by the rule-based system is available only through
samples, rather than completely through an oracle.

All results in this chapter concern trees. The first
section introduces a restricted MIN/MAX tree topology and shows
that attenuation synthesis is an NP-Complete problem even for
very small strength alphabets. We then show that the problem
remains NP-Hard for real strengths. This second result implies
NP-Hardness of the first one. Instead of proving only the more
general result, we prove the simpler case first and reference
its proof when proving the more general case, for ease of
exposition. The second section proves analogous results for
trees where combinators are MIN functions and integrators are
probabilistic sums. Since these are negative complexity
results, they apply to more general cases, such as unrestricted
trees and graphs. D.W. Loveland completed a proof that the
unrestricted tree case is NP-Hard, before the analogous result
in the restricted case, presented here, was proven.

Synthesis of attenuations: MIN/MAX case

This section contains the proof that the incomplete case on
restricted MIN/MAX trees is NP-Complete.

First, the nature of the restriction.

We restrict the number of inputs to MIN boxes to be a
constant but we do nt restrict the fan-in to MAX boxes. This
means that we can have any number of rules concluding the same
hypothesis, but each rule can only have up to a fixed number of
conjuncts in its premise. We restrict the depth of the
inference tree, i.e. the length of the longest deduction, by a

A.
'~1."47

I

48

constant (fixed number, independent of the size of the net).
We restrict MIN and MAX to be alternating.

These restrictions model certain observed properties of
rule-based expert systems: they typically exhibit short
inference chains, while their growth consists mostly of the
addition of rules that conclude the same intermediate
hypotheses already present. Moreover, we restrict the topology
of the net to be tree.

For the purpose of the proof that follows, it is sufficient
to consider nets with the topology described in Figure 5.1.

41

I

Figure 5.1 Restricted networks

We note that this topology does not have MIN's as leaf
boxes. This is somewhat unsatisfactory, because one would
expect to see the net composed of building blocks like that in
Figure 5.2.

'4

49

MIN MINMIN

Figure 5.2 A natural building block

Each of the blocks in Figure 5.2 corresponds to rules
concluding the same hypothesis. Still, the net we consider can
be viewed as a shorthand for the more "natural" inference tree
shown in Figure 5.3. To make this more precise, it will be
shown that the inputs to the network in Figure 5.3 can be
selected to simulate any desired assignment of inputs to the
network in Figure 5.1. Number the inputs to the network in
Figure 5.1, 1 through n, and the inputs to the network in
Figure 5.3, 1 through 2n. The even inputs (2 through 2n) to
the network in Figure 5.3 have value 1. Input j (where j is
odd) to the network in Figure 5.3 has the same value as input
floor(j/2) to the network in Figure 5.1. Clearly, the output
of the network in Figure 5.3 is the same as the output of the
network in Figure 5.1 for any input to the network in Figure
5.1 when the input to the network in Figure 5.3 is built
according to the mapping just given.

50

MAX
I
MIN

(U U U

ZA .IN A-' A.-- A .-\

Figure 5.3 Network equivalent to that in Figure 5.1

The problem is formalized as follows.

Problem name. Restricted Attenuation Synthesis (RA).

Problem instance. A tree with alternating MIN and MAX
boxes, multiplicative attenuators with 0/1 values at the output
of MIN boxes, bounded fan-in to MIN's, bounded depth; a set of
tests.

Question. Is there an assignment of attenuations for which
all tests are handled correctly?

Theorem 5.1 RA is NP-Complete.

Proof

51

Membership in NP is trivial. The non-deterministic programthat solves the problem has a loop whose body is an assignment

of 0 or 1 (non-deterministically) to each attenuation.

We transform Monotone 3-Conjunctive Normal Form
Satisfiability (MSAT) [Garey and Johnson, 1979] to RA. The
generic MSAT instance is a conjunctive normal form expression,
where each clause contains only three negated or only three un-
negated variables (e.g., (x vx2vx2) & (-x1v-x_ v-x)). The
question is whether there il a satisfying trufh asignment for
the expression.

Given an expression E in monotone conjunctive normal form,
the following algorithm will produce in time polynomial in the
size of E an instance of RA such that the Question has answer
yes if and only if E is satisfiable.

Let n be the number of distinct variables in E, m be the
number of clauses in E. (n and m can be obtained in polynomial
time from any "reasonable" encoding of E.)

The tree of (the) RA (instance) has three levels: a MIN box,
two MAX boxes under it, attenuators under the MAX boxes. There
are 2n+l attenuators for each MAX box. For clarity we number
them 1 through 4n+2. (The tree has size polynomial in n, and
therefore in the size of E.) Figure 5.4 shows the tree.

52

4

MIN

MAX MAX

2n+1 2n+2 4n+2

Figure 5.4. Tree of the generic RA instance

There are 2n+m tests for the RA instance. Here is how to
build them. a) m clause tests. Each one of these tests
corresponds to a clause. Each of these tests has output .6.
Each of the inputs that is not explicitly specified in the
following has value 0. If the clause is positive and contains
the variables v., v v , the test is built as follows: .6's
for inputs i, J, k,J'9vtor input 4n+2. If the clause is
negative and contains the variables v., v, v , .6's for inputs
2n+l+i, 2n+l+j, 2n+l+k, .9 for input in+l (fact, any two
values a and b, such that 0 < a < b < 1 will do.) Intuitively,
one can say that the left MAX box is for positive clauses,
while the right MAX box is for negative clauses.) (Clearly,
these tests can be built in time polynomial in n and m.) b) 2n
variable tests. Each pair of these corresponds to a variable.
The first test of each pair has output 0. The second has
output .6. Each of the inputs that is not explicitly specified
has value 0. For variable v , the first test of each pair has
a .6 for inputs i and 2n+i+li the second test has .6's there
and .9's in positions n+i and 2n+l+n+i. (Clearly, these tests
can be built ii, time polynomial to n, the number of variables

53

in E.)

An example of how MSAT instances are mapped into RA
instances is given below.

~Example 5.1

The MSAT instance is
E = (x vx2VX3) & (-X1V-X2V-x3)
m=2,n=l.
The corresponding RA instance is shown in Figure 5.5. T and
T are the clause tests; T and T are the variable testi
cgrresponding to xl; T5 ang T6 are the variable tests
corresponding to x2 ; T7 and T8 are the variable tests
corresponding to x3.

V

1~

54

MAX km

'I

output

.6 .6 .6 0 0 0 0 00 00 0 0 0 .9 .6

T'2 0 0 0 0 0 0 .9 .6 .6 .6 0 0 0 0 .6

8

T3 .6 0 0 0 0 0 0 .6 0 0 0 0 0 0 0

T4 .6 0 0 .9 0 0 0 .6 0 0 .9 0 0 0 .6

T 0 00.6 0 0 0 0 .60000 0 0

T6 0 .6 0 0 .9 0 0 0 .6 0 0 .9 0 0 .6

T7 0 0 .6 0 0 0 0 0 0.6000 0 0

T 0 0 .6 0 0 .9 0 0 0 .6 0 0 .9 0 .6

Figure 5.5 Instance of RA corresponding to (xlvx2 vx 3)&(-

XV-X 2 V-X3)

-1kA

% %

.,. ,., ,.- ,.>,,.,. ... _ _ - .. '' ; ,'.i '.,' dl :_

55

(End of example)

Now, it must be shown that the instance of RA built
according to the above algorithm is a yes-instance when E is
satisfiable and a no-instance when E is not satisfiable.

Lemma .i . Consider the variable tests. Consider the tests
corresponding to a generic variable v4 . The first test of each
pair is satisfiable in isolation if ad only if at least one of
the attenuations in positions i and 2n+l+i is 0, because the
output of the MIN box is 0 if and only if at least one of its
inputs is 0. The second test is satisfied in isolation only if
at least one of the attenuations in positions i and 2n+l+i is
1, because the output of MIN is .6 only if at least one of its
inputs is .6. Therefore, e of the two attenuations
is 1 and the other is 0. (Note that the variable tests do not
specify which of the attenuations is 1 and which one is 0.)

L ma 5.2. Consider the clause tests. Consider the test
corresponding to a generic clause, consisting of three
literals, 1., 1, 1 Assume that the literals are positive.
The test is'sat~sfi~d in isolation only if any of the
attenuations in positions i, J, and k is set to 1, because the
output of the MIN box is .6 only if at least one of its inputs
is .6. The case for negative clauses is similar, but the-attenuations are now in positions 2n+l+i, 2n+l+J, 2n+1+k.

(A) If E is satisfiable then RA is a yes-instance. In order
for RA to be a yes-instance, there must be some assignment of
attenuations such that all tests are "satisfied," i.e. the
test inputs must produce the test output. Assume that each
clause in E is satisfiable. Consider a generic clause first.
Set to (1,0) the two attenuations in position i and 2n+l+i,
respectively, if variable v in the clause is T in E's model;
set the attenuations to (0,I) if variable v in the clause is F
in E's model. Since E has a model, it can Aever be that such a
pair of attenuations is mapped into (1,0) and (0,1)
simultaneously. Therefore, by Lemma 1, the variable tests are
satisfied. Now, note that each clause must be satisfied in
order for E (in CNF) to be satisfied. Therefore, a positive
clause will have a variable set to T in the model for E. This
means that the corresponding test has .6 as output, because one
of the .6's from the left MAX box will have the corresponding
attenuation set to 1 and, being MINned with the .9 from the
right MAX box, it will propagate to the output. Therefore, the
test is satisfied. The case for negative clauses is analogous.

(B) If RA is a yes-instance, then E is satisfiable, i.e. E
has a model. Given RA, build the model according to the
following correspondence: if the attenuation in position i has

4b. value 1 and the attenuation in position 2n+l+i is 0, variable

ZIPw * .*-,%..* . * ~$v '.sg ~ ***

56

v4 has value T; if these attenuations have values 0 and 1,
viriable v has value F. As already shown, (0,1) and (1,0) are
the only two possible cases. Since E is in conjunctive normal
form, E is satisfiable if (and only if) each clause is. Each
clause is satisfiable if each clause test is, as shown in Lemma
2.

(End of proof.)

The proof that RA is NP-Complete can be extended to the case
in which attenuations are allowed to be real numbers between 0
and 1, as shown below.

Problem name. Attenuation Synthesis (AS).

Problem instance. A tree with alternating MIN and MAX
boxes, multiplicative attenuators with real weights at the
output of MIN boxes, bounded fan-in to MIN's, bounded depth; a
set of tests.

Question. Is there an assignment of attenuations for which
all tests are handled correctly?

Theorem 5.2. AS is NP-Hard.

Proof.

The proof is analogous to the NP-Hardness part of the NP-
Completeness proof for problem RA. In particular, the clause
tests need not to be modified. The variable tests must be
modified. A third test must be added for each variable. This
test is equal to the second test, but .7's are in place of the
.9's.

Examle 5.

The MSAT instance is
E=(x vx2 vx3) & (-X1V-x2V-x3)m=2,A=3.
Figure 5.6 shows the corresponding AS instance. T and T2 are
the clause tests; T3, T4 , and T5 are the variable tests
corresponding to x1 ; T6, T7 , and T are the variable tests
corresponding to x2 ; T9 , T1 0, and T1 are the variable tests
corresponding to x3.

01*

57

MAX MAX

output

T .6 .6 .6 0 0 00 00 00 0 0.9 .6

T20 0 0 0 0 0 .9 .6 .6 .6 0 0 0 0 .6

T3.6 0 0 0 0 0 0 .6 0 0 0 0 0 0 0

T 4 .6 00 .9 0 00.6 00.9 0 00 .6

T 5 .6 0 0 .7 0 0 0 .6 0 0 .7 0 0 0 .6

T60 .6 0 0 0 0 0 0 .6 0 0 0 0 0 0

T70 .6 0 0 .9 0 0 0 .6 0 0 .9 0 0 .6

T 8 0 .6 0 0 .7 0 0 0 .6 0 0 .7 0 0 .6

T 9 0 0.60 0 00 0 0.60 0 00 0

T0 0.6 0 0 .9 0 0 0.6 0 0 .9 0 .6

010 .6 0 0 .7 0 0 0 .6 0 0 .7 0 .6

Figure 5.6 Instance of AS corresponding to (x 1vx 2vx 3)(

x v-x 2 v-x 3)

58

Now, we show that the second and third tests are satisfied
only if at least one of the attenuations in position i and
2n + 1 + i is 1. Clearly, the tests can be satisfied when
either or both of the attenuations are 1. It will now be shown
that the two tests in isolation cannot be satisfied when both
attenuations are not 1. Assume that both attenuations are
different from 1. In this case, the output .6 must propagate
from inputs n+i or 2n+l+n+i, since all other inputs are
attenuated to less than the desired value of the output (.6).
Therefore, as shown in Figure 5.7, in order for the two tests
to be satisfied in isolation, the attenuations in positions
n+i, 2n + 1 + n + i, n+i, 2n + 1 + n + i must satisfy the
constraints summarized in any of the four rows in the following
table:

attenuations in position:

n+i 2n+l+n+i n+i 2n+l+n+i

=6/9 >=6/9 =6/7 >=6/7

=6/9 >=6/9 >=6/7 =6/7

>=6/9 =6/9 =6/7 >=6/7

>=6/9 =6/9 >=6/7 =6/7

None of these four conjunctions is satisfiable. Therefore,
the assumption does not hold, i.e., either the attenuation in
position i or the attenuation in position 2n + 1 + i must be 1.

.9

59

I°I
0

MIN

<.6 MAX MAX]

/V
k.6 ... <.6 ++

) "'n+i W a ") " "2 n+r F
.9 .9

.7 .7

Figure 5.7 Constraints on attenuations

From this point on, the proof is totally analogous to the

one for RA being NP-Hard.

(End of proof.)

There is a special case for which there is an efficient
algorithm to synthesize attenuations. In this case, the
network is as shown in Figure 5.8 below. Attenuations are
multiplicative, with weights 0 and 1.

• .=°'S

60

Figure 5.8. A simple inference tree.

The algorithm is the following. Consider each test in turn.
Initialize all attenuations to 1. Take MIN of each pair of
inputs; set the corresponding pair of attenuations to 0 if the
MIN of the pair is greater than the output of the test.

By following a least commitment strategy, the algorithm
finds an assignment of attenuations compatible with the tests
if such an assignment exists.

Incomplete case: MIN/Probabilistic sum

It is shown that the incomplete case is NP-Hard with MIN,
p+, even when trees of restricted depth and fan-in to MIN's are

4. considered.

The restrictions introduced here are analogous to those
described in "proof2." Note that the result is obtained
without introducing MAX boxes.

.'*Q We restrict the number of inputs to MIN boxes to be a

6l

constant, but we do n=Z. restrict the fan-in to p+ boxes. This
means that we can have any number of rules concluding the same
hypothesis, but each rule can only have up to a fixed number of
conjuncts in its premise. The depth of the inference tree,
i.e. the length of the longest deduction is restricted by a
constant (fixed number, independent of the size of the net).
We restrict MIN and p+ to alternate. It has been observed that
many rule-based expert systems exhibit short inference chains
and grow by the addition of rules that conclude the same
intermediate hypotheses already present. We also restrict the
topology of the net to be tree.

For the purpose of the proof that follows, it is sufficient
to consider the topology in Figure 5.9, where a indicates
attenuation. (The attenuation feeding directly into the MIN
box is to be considered a shorthand for a degenerate, 1-input
p+ box with attenuated input.)

MIN

P+ a

Figure 5.9 The generic RAP instance

The problem is formalized as follows.

Problem name. Restricted Attenuation Synthesis (MIN/p+
case) (RAP).

Problem instance. A tree with alternating MIN and p+ boxes,
multiplicative attenuators with 0/1 values at the input of p+
boxes, bounded fan-in to MIN's, bounded depth; a set of tests.

Question. Is there an assignment of attenuations for which

62

all tests are handled correctly?

T e RAP is NP-Complete.

Proof
Membership in NP is trivial. The non-deterministic program

that solves the problem has a loop whose body is an assignment
of 0 or 1 (non deterministically) to each attenuation.

We transform One in Three Satisfiability (OTS) [Garey and
Johnson, 1979, p.259] to RAP. We use the variant in which no
clause in the expression contains a negative literal. The
generic instance of this problem is an expression in
conjunctive normal form, with no negative literal. The
question is whether there is a model for the expression such
that each clause has exactly one true literal.

Given an Expression E in monotone 3-conjunctive normal form,
the following algorithm will produce in time polynomial in the
size of E an instance of RAP such that the Question has answer
yes if and only if E has a model in which only one literal per
clause is true.

Let n be the number of distinct literal in E, m be the
number of clauses in E. (n and m can be obtained in polynomial
time from any wreasonable" encoding of E.)

The p+ box in the instance of RAP has n inputs. There are
2m tests: two tests correspond to each clause in E. Let a
generic clause contain the variables v., v4 ,vv,. The first
test for this clause has values .6 coriespdndi~g to inputs i,
J, k, value .7 corresponding to the lone attenuated input to
the MIN box, all other input values set to 0, and output value
.6. The second test for this clause has values .7
corresponding to inputs i, J, k, value .8 corresponding to the
lone attenuated input to the MIN box, all other input values
set to 0, and output value .7.

Exampl 5.3L

Figure 5.10 shows the instance of RAP corresponding to
E=(x vx vx3 (x2vx3vx4)

In the example, T and T, correspond to the first clause in E,
while T3 and T4 c~rrespo d to the second clause in E.

63

MIN

,

output

T .6 .6 .6 0 .7 .6

-- 9.. T2 .7 .7 .7 0 .8 .7

T3 0 .6 .6 .6 .7 .6

T4 0 .7 .7 .7 .8 .7

Figure 5.10 Instance of RAP corresponding to

(xIvx2vx3)&(xIvx2vx4)

(End of example)

It will be shown that this instance of RAP is a yes-instance
if and only if the corresponding instance of OTS is a yes-
instance.

The if part is simple. If a variable in the model for E is
T, set the corresponding attenuation to 1; otherwise (with the
exception of the attenuation input to the MIN, which is also
set to 1), set attenuations to 0. Since this insures that

" exactly one of the attenuations input to p+ corresponding to
non-0 input test values is 1 for each test, the input test

64

value propagates unchanged to the output and therefore each
test is satisfied.

Only if part. It will be shown that if RAP is a yes-
instance, then necessarily OTS is a yes-instance. Assume that
RAP is a yes-instance. It will be shown that in order for RAP
to be a yes-instance it must be that exactly one of the
attenuations corresponding to the p+ box inputs is I for each
test. By assigning T to the variable corresponding to this
unique attenuation, we obtain a model for E which satisfies the
"one in three" condition. Consider a generic pair of tests
corresponding to a clause in E. We show, by algebraic
manipulation, that this pair is satisfied if and only if
exactly one of the three attenuations corresponding to the
tests is 1. Call the attenuations x, y, and z. The pair of
tests is satisfied if and only if the following system has a
solution:

.6x [p+] .6y [p+] .6z - .6

.7x [p+] .7y [p+] .7z = .7

.6x + .6y - .36xy + .6z - .36xz -.36yz + .216xyz - .6

.7x + .7y - .49xy + .7z - .49xz -.49yz + .343xyz = .7

x + y - .6xy + z - .6xz - .6yz + .36xyz = 1
x + y - .7xy + z - .7xz - .7yz + .49xyz - 1

If any two of x, y, z are equal to 0 and the other is 1,
this is satisfied. Otherwise, we should have (by subtracting
the second from the first equation, side by side):

xy + xz + yz = .13xyz

Let z > 0 (A totally analogous argument holds for x > 0 or
y > 0.)

xy/z + x + y = .13xy

.13xy > x + y,

impossible for 0 <= x <= 1, 0 <= y <= 1.

(End of proof.)

QOservation The second part of the preceding proof,
unchanged, shows that attenuation synthesis is NP-Hard when
attenuations are allowed to vary between 0 and 1, rather than
being restricted to 0 and 1.

.0 W"

CHAPTER SIX

CHAINS

Introduction

The chain is the simplest topology for an inference net. (A
chain of n rules is a rule base that contains only n rules of
the form IF P THEN P WITH ATTENUATION A., 0 < i < n+l.)
Synthesis of Attenuat4 ~As in a chain is a thivial matter if the
attenuations are closed under composition and the identity
attenuation is one of the allowable ones. Here, we consider
the case in which attenuations are not closed under
composition. To make the problem more realistic (and more
challenging), it is assumed that attenuations are monotone non-
decreasing functions mapping values into smaller values.

Attenuations that are not closed under composition do not
allow a simple form of learning, called ciankin (Rosenbloom et
al., (1985]) that consists of substituting a chain of rules
with a single rule; it may be useful to do this for reasons of
efficiency, for example.

The result that is presented next provides another reason to
prefer attenuations that are closed under composition.

Complete and incomplete cases

The complete and the incomplete cases are hard when
attenuations are not closed under composition.

In this case, one can model the problem as follows.

The attenuations are functions from CF's to CF's. The test
cases are a collection of (input vector, output) pairs. To
simplify matters, we consider a chain of rules only, i.e. an
expert system with a single input feature and a single output
feature. (By feature, here we mean an attribute-value pair.)
We also assume that all functions are finite functions.
Suppose that we have a chain of rules r1 , r2 ,..., r . Suppose
that the CF values range over the set A. A test se is the
(possibly incompete) specification of a finite function h:A->A.

" -. 65

|

66

(This way, we cover both the complete and the incomplete case.)
The attenuations are functions fi :A->A, and the set of all
attenuations is called F.

Synthesizing attenuations for the chain of length m is
tantamount to finding a composition of functions from F of
length m that is identical to h (possibly, just as far as h is
specified by the test set; in this case, it is indifferent what
the composition of f's is outside the specification).

This problem is related to finite function composition, a
known NP-hard problem. In fact, this problem is PSPACE-
Complete if there is no restriction on the length of the
composition [Kozen, 1977]; it is NP-Complete if the length of
the composition is restricted to be K or less and K is
expressed in unary (Garey and Johnson, 1979]

We now show that the problem is NP-Complete even if the

following additional restriction is added: "all the functions
are monotone." The statement of the problem and a motivation
of the model used follow.

Name: Monotone function composition (MFC).

Instance: A type declaration of a vector of subrange of
I-* integers (type T), a family F of Pascal procedures that take as

input a vector of type T and return a vector of type T, such
that the output vector is no greater (componentwise) than the
input vector (i.e. f in F is a monotone function from T to
T), a special monoton procedure h from T to T, and an integer
K.

Question: Can h be obtained by composing procedures in F in
such a way that the length of the composition is K? (i.e., is
there a sequence of K indices such that h = fil o fi2 0 o
fik ?).

~Theorem

MFC is NP-Hard.

Note on encoding being concise

The customary encoding of finite functions is given by the
list of ordered pairs that is the graph of the finite
functions. However, the encoding used in this proof is more
concise, since the functions are encoded as Pascal procedures.
The customary encoding seems extravagantly long in this case:
it would seem that attenuations would be described, whenever
possible, by a procedure to compute their output, given their

-.f. input, rather than by a list of (input, output) pairs. A

67

" similarly concise encoding is used by Even and Goldreich [1981]
for their proof that determining whether a given permutation
can be obtained as the composition of permutations from a given
set is NP-Complete.

Proof

Exact cover by three sets (X3C) is transformable to MFC.
Here is the definition of the X3C problem, after [Garey and
Johnson, 1979]. Instance: A finite set X with IXI=3q (q an
integer) and a collection C of 3-element subsets of X.
Question: Does C contain an exact cover for X, i.e., a subset
C' of C such that every element of X occurs in exactly one
member of C'?

An algorithm is given to construct an instance of MFC from a
given instance of X3C in polynomial time. This instance of MFC
has the property that the instance of X3C is solvable if and
only if the instance of MFC is.

A generic instance of X3C is U = {ei), i=l...3n, S = IS.}, j
- ...m, where Sj = (ejl, eJ2, eJ3).

Algorithm

The integer K is n. The vector declaration is:
type a= array[l..3n] of 0..2;
(Note that 3n is a constant here!)

The procedure h is:
procedure h(inp:a, var out:a); /* "predecessor function" */
begin

for i:=l to 3n do
if inp[i]<>0 then out[i] := out[i] - 1

else out[i] := in[i] end;

Examples

(3n = 6)
inp: [222222] [222211] (111011]
out: [111111] [111100] [000000]

(End of examples.)

For each S. in S, construct the following procedure fsj

procedure f (inp:a, var out:a); begin
if inp[jl <>0 then out[jl] := inijl] - 1

else out[jl] := in[jl];
if inp[j2)<>0 then out[J21 := in[j2] - 1

else out[j2] := in[j2];

68

if inp[j3]<>O then out[j3] := in[j3] - 1
else out[J3] intj3]

end;
Examples

(3n = 6, S = (e ,ee
inp: [22222] [2 2121 (122121]
out: [212112] (202002] [112011].

(End of examples.)

(End of algorithm.)

Clearly this instance of MFC is built in time polynomial in
n and m, because h has size linear in the size of the number
3n, the fS 's have size linear in the size of the numbers

JAJ I he number of the fS.'s is bounded by m, and the size
ot e ype declaration is bounded by 3n.

Now I show that if (the) MFC (instance) has a solution, then
(the) X3C (instance) does too.

If MFC has a solution, then the composition f.. o f- 0 ...
o f A must be such that the vector 122.. .2] is mlped 9
[11... 1], because of the definition of h.

But this can be true if and only if each entry in the vector
is decremented by exactly one fi"

Therefore, the subcollection of triples (S .jS 2,...S._} is
an exact cover for U. (Note that the size of ~hi cover i n,
as it should, because K=n.)

Finally, I show that if X3C has a solution, then MFC does
too.

If X3C has a solution, then there is a collection of triples
(S ilS i2. ..,S in) which is an exact cover for U.

Consider the function o f . o ... o f . First, note
that K=n, and therefore t ompoifion is of right length.

Then, note that this function "fuzzy-decrements" each entry
in each vector of type a exactly once.

(End of theorem.)

The "functions* f and h map vectors into vectors. The
functions we are in4 rested in map CF-values to CF-values
(e.g., integers to integers). Of course, the vectors can be
mapped into integers and viceversa. For example, reaa [2222221

69

as (222222) Therefore, if MFC is NP-hard, so is the problem
of composing finite monotone functions of integers.

This handles the complete specification case.

Now, consider the incomplete specification case. If the
specification given by the test cases maps only p out of q
possible CF values, just consider the set of functions F' from
Al to Al ,, where Al is the set of p CF values that appear in
input par? of the specification, and Al , is the set of p' CF
values that appear in the output part o? the specification. if
min(Ipl,lp'l) = O(IAI), the proof given for the complete case
carries through with minor modifications for the incomplete
case as well.

lfP .[..V

' ° ' ,4 4'; ;% *S*;,'*."-:;". -. ... *...:....%*.%........... :.;:....%... " .- '.,

CHAPTER SEVEN

GRAPHS

Introduction

Graphs are the most general topologies for inference nets.
Only acyclic graphs are considered here. One would expect
synthesis of attenuations in graphs to be be difficult: this is
indeed the case. Therefore, we consider a problem which is
simpler (in a suitable and informally appealing sense) than
those considered in th p Tevious c'hapters: the determination of
o attenuation, in the complete case.

The results we obtain in this chapter have counterparts in
the theory of switching functions. In particular, we find a
fast polynomial-time algorithm to verify whether a fault on an
input line in a monotone circuit is undetectable. To the best
of our knowledge, this algorithm is faster than any known one.

Attenuation synthesis in MIN/MAX graphs with 0/1 weights

In this chapter, we consider the determination of one
attenuation in a graph. A net is given with all attenuator
values specified. A function that the net is supposed to
realize is also given. However, the given attenuator values
are not necessarily correct, i.e., the mapping between net
inputs and net outputs is not necessarily that specified in the
function. We only consider the problem of detecting whether
the value of a specific attenuator is correct or not. In other
words, it is assumed that one of these two cases holds: (1) the
net with the given attenuator values realizes the function
given in the problem statement; (2) the net with one
attenuation value changed, for a given attenuation, implements
the given function. The problems described in this chapter all
deal with identifying whether case (1) or (2) holds.

First, assume that the following parameter choices hold: (a)
MIN, MAX combinators and integrators; (b) 0/1 weights and CF's;
(c) NOT or identity predicate functions.

Problem tame. Detection of incorrect weight, general case

% %

71

(DG).

Problem instance. An inference net with parameters as
described above. A function to be realized by the inference
net. A marker for a special attenuator in the net. All "
attenuators in the net are given value 1.

Question. Is there a test that detects whether the marked
attenuator should have value 0?

The second problem is like DG, except that the marked
attenuators are restricted to be input attenuators.

Problem name. Detection of incorrect weight, input case
(DI).

Problem instance. An inference net with parameters as
described above. A function to be realized by the inference
net. A marker for a special input attenuator in the net. All

attenuators in the net are given value 1.

Question. Is there a test that detects whether the marked
(input) attenuator should have value 1?

CommentJI The question asked in DG and DI can be rephrased
as Is the net redundant with respect to the CF value
attenuated by the marked weight?"

Comment 2 The problems are equivalent to that of detecting
a stuck-at-0 fault on the line (input, in the case of DI) to a
Boolean circuit with the same topology as the inference net.
Example 7.1 illustrates this correspondence.

Results Problems DG and DI are NP-Complete. DI is NP-
Complete by a slight modification of Theorem 3.2 by Ibarra and
Sahni [19751; since DI is a special case of DG, and DG is in
NP, DG is also NP-Complete.

Consider a net with the following parameter choices: (a)
MIN, MAX combinators and integrators; (b) 0/1 weights and CF's;
(c) identity predicate function.

Problem name. Detection of one incorrect weight, general

monotone case (DGM).

Problem instance. As for DO.

Question. As for DG.

Problem name. Detection of one incorrect weiaht, inpu:
monotone case (DIM)

. , , #......U. .. °

72

Problem instance. As for DI.

Question. As for DI.

Commen These problems are equivalent to that of detecting
a s-a-0 fault on a line (input line in the case of DIM) of a
monoton Boolean circuit.

In this example (Figure 7.1), we illustrate the
correspondence between checking the value of an attenuation in
an inference net and detecting whether a line or a gate input
in a monotone Boolean functions is stuck at 0.

pp...

"., *€

,-,'- :v . .". ,''.':
"

;''-" " ... "' "," .v ,.% " ".' Q- 2 . .'. .. .- g .2 .. .-..- *2'g 2 * ¢g

73
0

MAX

a=1.

MIN should b be 0?

(a)

ii i2

Is i 2stuck at 0?

(b)

ii i2

Figure 7.1 Correspondentce between certain inference nets

and Boolean networks

(End of example)

One could therefore consider using a standard fault-

74

S detection technique to solve problem DGM. The D-Algorithm is
such a technique [Breuer and Friedman, 1976]. Unfortunately,
the D-Algorithm, which has exponential worst-time complexity,
also has exponential worst-time complexity for monotonic
networks. Moreover, Fujiwara and Toida [1982] show that
problem DGM is NP-Complete. However, a modification of the D-
Algorithm is shown to solve the fault-detection problem in
polynomial worst-case time complexity when there are only a
"small number" of reconvergent paths in [Fujiwara and Toida,
1982]. This would seem to be a practically important case for
inference networks that are almost trees. In particular,
Fujiwara and Toida's result shows that problem DGM, restricted
to graphs that are almost trees, can be solved in polynomial
time providing a bridge between the simple tree case and the
NP-Complete problem DGM. In the remainder of this section,
problem T , restricted to monotone networks, will be
considered.

Let f be the function realized by the net with weight value
1. It is a monotone Boolean function.

A test X will distinguish the case "weight = 0" from the
case "weight = I" on the i-th input if and only if

f (x 1,... "+ xn) = f.(l) <>
f (X ... ,x,0,x+ , . ,) = f(O) (1) <>
Sincl the function'l is montonic, in order for fi(1) <>

fi(0), it must be that fi(0)=0 and fi(1)=l.

Therefore, to find a test, one must find an input vector X
such that:

(a) a has a 1 in the i-th position;
(b) f O= I; i
(c) f() = 0, where 2 P is the vector equal to A in all

positions, Eut with a 0 in Phe i-th position.

Definition 7.1 Let 2 and y be vectors. j is said to be
co e b (indicated by L <= y) if each component of A is
less than or equal to the corresponding component of y. Call
this relation is covered by and the inverse relation cover.
We also say that j is a descendent of y and that y is an
ancestor of 1j. This relation is a partial order. If the numbers
are restricted to 0 and 1, the vectors form a Boolean lattice.
x is an immediate descendent of y if 2 is a descendent of y and
they differ in only one component, i.e., 2 has a 0 where y has
a 1 and they are otherwise equal. The universal upper bound
(u.u.b.) of this lattice is the vector of all l's; the
universal lower bound (u.l.b.) of this lattice is the vector of
all 0's. A Boolean lattice is isomorphic to the field of all
the subsets of its join-irreducible elements (pQ±nts). This
formalizes the correspondence between subsets and the bit
vectors representing them.

- N

75

In the remainder of this section, only vectors made of zeros
and ones will be considered.

E= Assume that f(xi) = 0, where x. is the vector with
zeros in each component, except for component i. Assume that
f(u.u.b.) = 1. Because of monotonicity, a test for input i can
be found by following Any chain of bit vectors covering f(Ap).
Such an algorithm takes O(n) function evaluations (i.e.,
queries to the perfect expert), where n is the number of inputs
to the inference net. In the remainder of this section, it
will be shown how to find the test in O(logn) function
evaluations.

Definition 7.2 A vector x is a critical vector if
(a) f(ji = 1;
(b) f(0) = 0 for all i.

Let x be a critical vector that covers p.

Then 2 is a test for input i, because
(a) x has a 1 in the i-th position, since it covers
(b) f(l = 1, since it is a critical vector;
(c) f (o) = 0, since L is a critical vector.

Definition 7,3 A vector 2 for which f(2) = 1 (f(A) = 0) is
a 1-vector (0-vector).

Example 7.2

For the four-input monotone function represented in Figure
7.2, vectors 1110 and 1010 are tests for input 1 stuck-at-0.
Vector 1110 is a test, because f(l110) = 1 and f(0110) - 0;
vector 1010 is a test, because f(1010) = 1 and f(0010) = 0.
Vector 1010 is also a critical vector, because f(1010) = 1,
f(1000) = f(0010) = 0. In Figure 7.2, 1-vectors are indicated
by (1), 0-vectors by (0).

76

(1)

1110 1101 1011 0111
11,1111,11,1 1 11I

1100 1010 0110 1001 0101 0011

(0) 1(11)

1000 0100 0010 0001

() (0) \ ,/0(0)

0000

(0)

Figure 7.2 A four-input monotone Boolean function

(End of example)

Theorem 7.1 If there is a test for an input attenuation i,
then there is a critical vector which is a test for the same
attenuation.

Proof

Assume f(u.l.b.) = 0, f(u.u.b) = I. (If this condition does
not hold, then there is no test, and the theorem is trivially
true.)

Let t be the vector with 0's anywhere, but position i,
where th re is a 1. Any test 2t is such that Lp <= xt"

Ifa is a 1-vector, then I is a test and must be a
critica vector, because f(u. l.b) = 0.

Assume f(sp) = 0. (If there is no test, the theorem

77

trivially holds.)

Let x be a test for the i-th input attenuation. Let q be
the number of i's in 2.

The least number principle allows to conclude that there is
a test with the least number of l's. (A "lowest-level test,"
informally.)

Let 2i be such a test.

Now, we show that, if 2i is not a critical vector, then X
is not a lowest-level test vector, thereby establishing the

desired result by contradiction.

Assume that A, is not a critical vector.

Since 21 is a test, its immediate descendent with a "0" in
the i-th p~sition, li/0' is a 0-vector.

Since ji is not a critical vector, it must have an immediate
descendent which is a 1-vector. This descendent must be a
vector with "I" in the i-th position, because Lli/0 is a 0-
vector. Therefore, this descendent covers

Call the descendent Id"

is a test, because: (a) Xld covers ;(b) d is a 1-
vect)xld4/ is a 0-vector, since 2Ldi/0 < li/0' Zli/0
is a 0-vector, £hi f is monotone.

Therefore, ji is not a lowest-level vector which is a test,
because there i a descendent of it, Xld , which is also a test.
We have a contradiction.

Therefore, 2i is a critical vector.

(End of theorem.)

The previous fact and theorem allow us to conclude that in
order to find a test for input attenuation i (or input i stuck-
at fault), it is sufficient to find a critical vector that
covers the vector with O's everywhere except for a 1 in
position i. A simple modification of the critical set
algorithm [Loveland, 1982] will do the job. Here it is.

Algorithm 7.1--Find a critical vector covering

1. C '

A <- U.u.b
R <- u.l.b. 2. Find two vectors A and A s.t.
(a) A1 and A2 together cover all piints cgvered by A

e

P.

.i

78

{correctness}
(b) each of A and A2 cover fewer points than A does
(termination)1
(c) A and A cover the same number of points (efficiency)

3. If (C RuA1) 1 then A <- A1
else

if f(CuRuA2) = 1 then A <- A
else (both A1 and A2 cover pgints covered by the critical
vector)

R <- A uRA <- A
4. If A has mori than two l's, then return to step 2

elseC <- AuC

A<-R
R <- u.l.b
if A - u.l.b or A = Ap then C is a critical vector
covering
else return to step 4.

Definition 7.4 There are monotone nets whose output does
not depend on one of the inputs. If the output does not depend
on input i, we say that the net is r with respect to
input i.

Remark If the function f is redundant with respect to the
input corresponding to A, the algorithm terminates, but it
returns a vector that is not a critical one. Therefore, if
the function may be redundant with respect to the considered
input, it must be checked that the output of the algorithm is
actually a critical vector.

Remark When 0 an 1 are the only allowable CF's and
attenuations, probabilistic sum behaves like MAX. Therefore,
the critical set algorithm can be used to find tests even for
nets with the following parameter choices: (a) MIN and p+
combinators and integrators; (b) 0/1 weights (attenuators) and
CF's; (c) identity predicate functions.

Synthesis of attenuations in MIN/MAX graphs with large CF

Consider the case of a finite CF alphabet different from

(0,1). The other parameters are: (a) MIN and MAX attenuators
and combinators; (b) finite CF alphabet, 10,...,p); (c)
identity predicate functions.

It will be shown that the results obtained for 0/1 CF's and
weights (attenuations) in the previous section extend to this
more general case.

2

79

Problem name. Detection of incorrect attenuations, monotone
input case in nets with large CF alphabets (DIML).

Problem instance. An inference net with parameters as
described above. A function to be realized by the inference
net. A marker for a special attenuator in the net. All
weights in the net are one.

Question. Is there a test that detects whether the marked
attenuator should have value less than one?

Comment The problem is equivalent to that of detecting a
stuck-at-k fault on the input to a logic circuit using the M-
logic, as defined, for example, in [Lu and Lee, 1984].
Therefore, one could use a method to detect fault in these
circuits to solve problem T2. One such method is the M-
Difference method, described in [Lu and Lee, 1984]. However,
the method presented below is faster in the worst case than the
M-difference method, for input tests in monotonic circuits.

Definition 7.5 A critical k-vector is a vector X such that:
(1) f(2) = k;
(2) for all a0 < j, f(I 0) <= k.

Definition 7.6 A test k-vector for input i with value I is
a k-vector I s.t.:

(1) f(x) = k;
(2) f(x) <> k, for all A's that differ from 2L in that the

i-th element is less than iniK, i.e., it is less than J.

Definition 7.7 A vector L is a d of vector y if
the components of L are pairwise less than or equal to the
corresponding components of y. We also say that L ic__ e
by-_. If only one component of i is less than the
corresponding component of y and by only one unit, we say that
A is an immediate descendent of -.

Example 7-3

For the three-input monotone function represented in Figure
7.3, vector 221 is a test 2-vector for input 1 s-a-2, because
f(221) = 2, f(121) = 0; vector 211 is a test 2-vector for input
1 s-a-2, because f(211) = 2, f(lll) = 0; vector 212 is a test
2-vector for input 1 s-a-2, because f(212) = 2, f(112) - 1;
vector 222 is a test 2-vector for input 1 s-a-2, because
f(222) - 2, f(122) = 1. Vector 211 is also a critical 2-
vector, because all its descendants are <2-vectors. Vector 210
is a test 1-vector for input 1 s-a-2, because f(210) = 1,
f(110) = 0. It is also a critical 1-vector, because all its
descendants are 0-vectors.

80

2101
j / 0 211 121 202 112 022

210 120 201 ill 021 102 012

(1) O)

200 110 020 101 Oil 002

20000 0

(0) (0) (0)

000

(0)

Figure 7.3 A three-input monotone function

(End of example)

Test metho How to detect a single faulty input

4 p~ ~ ' R .. w' %?.E*.4.. I.f .~ 4 ..4 *~f 4FL

81

attenuation. To find whether value j for input i should be
attenuated to realize the desired function, find a test k-
vector for input i with value J.

Theorem.2 If there is a test k-vector for input i with
value J, then there is a critical k-vector which covers the
vector with value j for input i and O's everywhere else.

Proof.

If there is no test, the theorem trivially holds.

Assume that there is a test.

LettN be the vector with O's everywhere, but position i,
where there is a j Any test At is such that At covers Ap.

Say that A is a "lowest-level test" in the lattice of
tests, i.e., ihe sum of its elements is smallest.

Now show that, if 2L is not a critical vector, then AI is
not a lowest-level tesi vector, establishing the desired result
by contradiction.

Assume that A is not a critical vector. Give the name h to
the value of inpt i in Ai"

Since A is a test, its immediate descendent with J-i as
value of input i, Ali/j-1' is a <k-vector, i.e. a vector y s.t.Sf(y) < k.

Since A is not a critical vector, it must have an immediate
(because oi monotonicity) descendent which is a k-vector. Call
this descendent Ald. Aid must be a vector with h in the i-th
position, because xli/ is a <k-vector. Therefore, this
descendent covers iiAl is a test, because: (a) A covers
ap; (b) Aid is a kectoil (c) Xljdi,. is a <k-vect;9, since
Aldi/j_ 1 Ali/j-l is a <k-vector,'&Ad f is monotonic.

Therefore, A is not a lowest-level vector which is a test,
because it has I descendent, Ald' which is also a test. We
have a contradiction.

Therefore, a is a critical vector.

(End of proof.)

Algorithm 7.2 Find critical k-vectors.

(Assumption: there is a k-critical vector covering 2p}

1. C <- p

82

A <- the greatest X s.t. 2 covers and f(A)-k
R <- u.l.b.

2. Let A., A be vectors s.t.
(a) t;getier, they cover all join-irreducible elements
covered by A
(b) each of them covers fewer Join-irreducible elements than
A
(c) they all cover the same number of join-irreducible
elements

3. If f(CuRuA1) - k then A <- A1
else

if f(CuRuA2) - k then A <- A2
else

R <- A UR
A <- A

4. If A is not join-irreducible vector or the u.l.b., then
return to step 2 else

if there is an E s.t. A covers E and f(CuRuE) - k, then
let A be the smallest such E
C <- AuC
A <- R
R <- u.l.b

5. If A - u.l.b then C is a critical vector covering
else return to step 4.

Proof of termination

We identify all loops and associate a natural number to the
first statement of each loop. It must be shown that this
number decreases for each execution of the loop. Instead of a
formal proof, I will argue informally.

There are only two loops in the program. The large loop
involves steps 2 and 4. The tghloa involves step 4 and the
last line of the program. In both cases, we assign to the
first line of the loop the level of vector A in the lattice of
vectors.

Because of condition (b) in step 2, A and A have lower
level than A. Therefore, R just before itep 4 Aas lower level
than A. Therefore, A at the exit point has always lower than
at step 2.

For what concerns the tight loop, note that at the last
line, the following holds: A <> u.l.b, R = u.l.b. If A is a
join-irreducible vector, the condition at step 4 holds and the
program terminates; if A is not a join-irreducible vcztor, we
returi to step 2 and are therefore of the tight loop, with an A
of a lower level than when we entered the tight loop.

(End of proof of termination.)

83

Proof of partial correctness

It is assumed that there exists a critical k-vector coverir.g
and that f(A) - k. It will be shown that, when exiting at

Rep 5, C is a critical vector covering , i.e., (1) f(C) - k
and (2) f(C0) < k, where Cc is strictly overed by C.

(1) holds because it is always true that f(CuRuA) - k: it is
true after initialization (i.e., just before step 2) and it is
invariant for both the large and the tight loops. But at exit,
A - u.l.b and R - u.l.b, therefore f(CuRuA) - k implies f(C)

Now, it will be shown that (2) holds.

Consider C as built of the jcin of join-irreducible vectors.
Each of these vectors is obtained by "splitting" A or by
descending along a chain of join-irreducible vectors in the
step after 4. An example of a chain of join-irreducible
vectors: 030-020-010.

Steps 3-4 guarantee that each of the join-irreducible
vectors must be present in order for f(C) - k to hold; the step
after 4 insures that each join-irreducible vector is the least
possible. In other words, steps 3-4 isolate a chain of join-
irreducible vectors that must be present in C for f(C) to be k;
the step after 4 isolates the least vector from that chain that
still lets f(C) be k.

(End of proof of partial correctness.)

Note that property (c) in step 2 is neither used to prove
termination nor to prove partial correctness.

[,

Complexity depends on how efficient it is to "split" A into
A and A2 in step 2. By insuring that property (c) always
h~ids at step (2), the space of vectors covered by A is always
(approximately) halved each time step 2 is executed. This is
insured by splitting a vector by substituting half of its
elements with 0 and leaving the others unchanged. Sometimes,
it may be more efficient to split a vector in some other way,
but other strategies cause A and A, not to be disjoint, which
means that the number of joiA-irred cible vectors is not halved
each time step 2 is performed.

Here are some examples of vector splits. The vector space
is halved in the first two cases, while it is not halved in the
third example. 6666 -> 6600, 0066. 6534 -> 6500, 0034. 6666
-> 6655, 5566.

84

Call the vector size n and the cardinality of the CF
alphabet m. Using the 6666 -> 6600, 0066 strategy, one must
deal with only n chains of join-irreducible vectors at step 2.
Then, a vector (vector "E") in each chain must be searched in
the step after 4. In all, O(m*logn) calls to f are necessary
to individuate 2ne element of vector C. Since there are n
elements in C, O(ntm*logn) - O(mnlogn) calls to f is the total
complexity.

The algorithm can be modified to run in the case in which A
is initialized to a vector & such that f(s) > k. Here is the
modified algorithm.

Algorithm 7.3

{Assumption: f(u.u.b) >= k}

1. C <_ lp

A <- u.u.b.
R <- u.l.b.

2. Let A , A, be vectors s.t.
(a) t get er, they cover all join-irreducible elements
covered by A
(b) each of them covers fewer join-irreducible elements than

A
(c) they all cover the same number of join-irreducible
elements.

3. If f(CuRuA I) >- k then A <- A 1
else

if f(CuRuA2) >- k then A <- A2
else

R <- A uR
A<-A

4. If A is not join-irreducible vector or the u.l.b. then
return to step 2 else

4.1 let E be the smallest E covered by A and s.t. f(CuRuE)-k
C <- AuC
A<-R
R <- u.l.b

5. if A - u.l.b then C is a critical vector covering p
else

return to step 4.

The proof of termination is totally analogous to that for
the previous algorithm. In the proof of partial correctness, a
different argument must be used to show that f(C) - k at step 5
at termination. Now, what is invariant for both the large and
the tight loops is f(CuRuA) >= k. But at exit, because of step
4.1, f(C) - k.

CHAPTER EIGHT

APPROXIMATIONS AN'-" INTERMEDIATE VALUES

Introduction

The previous four chapters have show- that the FrOt.err cf
synthesizing attenuations is hard, at least for mo. rately
complex topologies in the incomplete case. it is treref-:e
natural to investigate how difficlt it is to obtain
apLrcxiff~ate solutions to th.s hard prot.'eir and whether rzre
comprehensive tests that include the certanty factors for
intermidiate hvothesis simplify the synthesis proble.
(Definitions w;,l be g:ve. Ir. the aF,propriate sections of t,+s
chapter.)

Approximations are c nsidered ir, sec-tior. one. The use cf
tests that include the certainty factors of Antermediate
hypotheses is considered ir section tw .

Consider the protler of syrthesizir ap;roximate
attenuati ons frorr tests (com."ete case) . -ne could expect tc
be atle tc find ar effioiert a'gcritnrr to synthesize
approximate atter,-ations withirn a certairn error of the correct
ones. It wi.l be show:, that this is not possible, at least for
a suctatle, but reas-r, atle, defirtizor of approximatico .

Problem name. Apjroximate Restricted Attenuation Synthesis
(ARA).

Problem Instanve. A tree w:th alternating M:N and MAX
boxes, multiplicative attenuators with real values between 0
and ' at the output c,* M:N boxes, bounded fan-irn tc MIN's,
bounded depth; a set c test s.

Question. Is there an assignment of attenuations that is
within less than 0.5 fror the correct assignment?

Thecrem BI. ARA is NP-Hard.

Proof.

%U

86

If it were possible to solve ARA in polynomial time, it
would be possible to solve problem RA in polynomial time
(therefore contradicting Theorem 5.1), by using the following
algorithm: firstly, compute approximate attenuations using ARA;
secondly, set each attenuation that is less than .5 to 0 and
each each attenuation that is more than .5 to 1. (Note that no
attenuation will be equal to .5, because ARA obtains
attenuations which are within 2.than, not less than or equal
to .5 of the correct assignment.) Clearly, this algorithm is
correct and runs in polynomial time if ARA does.

(End of proof.)

The same proof technique can be used to show that
attenuation synthesis is NP-Hard when probabilistic sums are

used in place of MAX's. The details are left to the reader.

Intermediate Values

In this section, we assume that information about the
strengths at nodes interntl to the inference net is available.
This differs from the rest of the thesis, where we only assume
that information is available about the input-output relation,
in the form of tests (incomplete case) or perfect experts
(complete case). Clearly, this new model allows for more
information to be available to synthesize (or refine) tests,
and one would expect that efficient synthesis procedures would
exist.

Two cases are considered: in the first one, intermediate
certainty factors are attached to the output of attenuators; in
the second one they are attached to the output of combinators
and integrators. Figures 8.1 and 8.2 illustrate the first and
the second case, respectively, on simple examples. In both
cases it is possible to determine attenuations independently of
each other, on a local basis. This trivializes the synthesis
problem.

D-R19S 626 UTOMTING RULE STRENGTHS N EXPERT SYSTEMS(U) DUKE
2/2

UNIY DURHAM NC DEPT OF COMPUTER SCIENCE M G YALTORTR
NAY 87 AFOSR-TR-87-1348 $AFOSR-93-6265

N LRSIFSEID F/ 12/9 NL

ll.'..n

U208

1010

87

0

Figure 8.1 If the m i's are given, attenuations can be

synthesized easily

88

0

v3

Vl v2

Figure 8.2 If the v i's are given, it is easy to synthesize

attenuations

It is evident how attenuations can be synthesized when the
m I's are given. It will now be shown how to synthesize
a~tenuations when the v 's are given. Providing the v 's
divides the problem of iynthesizing the attenuation foi the
whole net into that of attenuation synthesis for nets
containing only one MIN or one MAX box. The MIN and MAX cases
will be presented separately. Consider the MAX case first.
Assume that a MAX box has q inputs. (Refer to Figure 8.3 for
notation.)

_' P, "P q A P

89

V

MAX

al * al i aq

i i.
I q

Figure 8.3 MAX subgraph for the vi case

Tests are given. T~e geqeric test is,
T ((iJ,...,ij,...,i),v). Define aW-v/1O . The generica~tenua ionis a -mn a. We claim thatithe tests are
satisfied only ii the atienuations are set as just stated. In
fact, if attenuation a is set to a larger value, there wili be
a test, T , for which ihe output of the box is large than v ,
and if a est is not satisfied with these values for the
attenuations, it will certainly not be satisfied with smaller
attenuations.

The MIN case is totally analogous. Notatio3 is as for the
MAX case. The generic attenuation is a -max a . The tests
are satisfied only if the attenuations Are set Is just stated.

Gallant [1985) studied a similar model in which all
intermediate values are given, but the only integrator and
combinator function is the sign of a sum. In Gallant's model,
the certainty factor of each variable is determined by
evaluating a linear combination of the certainty factors of the
variables that appear in antecedents of rules concluding about
the variable in question. Integrators and combinators are
algebraic sums. However, the value obtained by summing is then
mapped into -1, +1, and 0, depending on whether it is negative,
positive, or zero. Attenuations (which can be positive, zero,
or negative) are used as weights in the sums of certainty
factors that determine the values of certainty factors for all

90

variables that occur in the conclusion of some rule. For
example, in the net illustrated in Figure 8.4, certainty factor
c is the 'sign of ila 1i2 a 2+1i3a3 and certainty factor o is the
sign of ca,+da7.

1 2 34 50

Fi ur 8.0ap
e i f

r n e
n t or

s n
a l n

' o e

We~ nw esrb th moe inmr dailuigGaln'

terinloy ndexlan mtho fr omutngatenaton

Fodul. Exaple ofa rles anfrenc ewr sn aln' oe

Variablescarie patitimoned in moetetmal varinlg Glant'sf
terminolog anda exp. i Pa t oin isr doneubynstaticnaly n

analzin te prulestibase aenal veaiables doil ntou ine

mode. Exmpls ofrule ar

91

conclusions of rules; non-terminal variables occur in the
conclusion of some rules. This partition can be represented
graphically and in tabular form as in the example in Figure
8.5. The table is called de~andency matrix. The rows of the
dependency matrix are labeled by the non-terminal variables;
its columns are labeled by all the variables. A 1 in position
(i,j) means that there is a rule with variable i in its
conclusion and variable j in its premise. A 0 in position (i,j)
means that there is no such rule. Cases are assignments of
true, false, and unknown to all variables. The last two lines
in Figure 8.5 represent two cases.

N3N

non-terminal
variables

Ti T2 T3 T4 T5 T6 terminal variables

T 1 T2 T 3 T4 T 5 T 6 N1 N2 N43 N4

Ni 1 1 1 0 0 0 0 0 0 0
N2 0 0 1 1 1 1 0 0 0 0
N43 0 0 0 0 0 1 1 1 0 0
N4 0 0 0 0 0 0 1 1 1 0

Cases:

T T T F F F T F T F
F F F T T F F T T F

Figure 8.5 An acyclic inference net, a dependency matrix,
and two cases

The learning matrix has as many rows as the dependency
matrix. Each row in the learning matrix is the linear
discriminant for the corresponding non-terminal variable. This
means that, interpreting -1 as false, 0 as unknown and 1 as
true, row i holding vector L determines the value for its
intermediate or goal variabli Ni according to the rule:

92

+1 >0
Ni " -1 if Li. V - Lij*Vj <0

(where V0 - 1).

Figure 8.6 gives an example of learning matrix, for the net
whose dependency matrix was given in Figure 8.5. For example,
if Ti, T , and T are true, as in the first case in Figure 8.5,
then N &ould alio be true, because its linear discriminant
evaluaies to a value greater than zero, namely -1+3-3+3, i.e.,
2.

0 1 2 3 4 5 6 7 8 9

C T1 T2 T3 T4 T5 T6 N1 N2 N3

1 N1 -1 3 -3 3

2 N2 1 3 3 3

3 N3 -2 -4 2 2

4 N4 -2 2 2 -4

Figure 8.6 An example of a learning matrix.

93

The learning matrix is inferred from the cases by using any
of a variety of techniques: Gallant argues for the use of an
iterative method, called the Pocket Algorithm, but linear
programming can also be used. For example, the two cases in
Figure 8.5 are compatible with the dependency matrix in Figure
8.5 if and only if the following linear system has a solution:

L0 1 + Ll1 + L21 + L3 1 > 0 (first case: N1 is T when T1 , T2,

T3 are T)

L + L32 - L - L - L < 0 (first case: N2 is F when T

is T and T4, T5, T6 are F)

L03 - L63 + L7 3 - L83 > 0 (first case: N3 is T when T6 and

N2 are F, N1 is T)

L04 +L74 -L84 + L < 0 (first case: N is F when N1, N3 are

T, N2 is F)

L01 - L1l - L21 - L31 < 0 (second case: N1 is F when T1, T2,

T3 are F)

L02 - L32 + L42 + L52 - L62 > 0 (second case: N2 is T when

T3 and T6 are F, T4 and T5 are F)

L0 3 - L63 - L73 + L83 > 0 (second case: N3 is

T when T6, N2 are F, N1 is T)

L04 - L74 + L84 + L94 < 0 (second case: N4 is F when N1 is

F, N2 and N3 are T).

iC

CHAPTER NINE

REFINEMENT

Introduction

The problem of synthesizing approximate attenuations has
been shown to be NP-Hard in the previous section, for a simple
definition of approximation and even for the restricted network
topology introduced in chapter 5. (The previous chapter has
also contained a discussion of the synthesis of attenuations
when the certainty factors of intermediate hypothesis are
known.) The results of the previous chapter make it necessary
to investigate the use of expert-given attenuations as a
starting point for the refinement of rule strengths.

The first section considers whether knowing principal paths
(defined in section 3 of chapter 4) for all tests helps
synthesizing attenuations in the incomplete case. The second
section contains two NP-Hardness results concerning the problem
of refining attenuations starting from very good estimates.
The third section exploits the structure of the proofs of the
results presented in section 2 to speculate as to why
refinement is a hard problem and, more concretely, present a
fast algorithm for refinement when a simple condition on the
expert-given attenuations holds. The fourth section presents
several iterative algorithms for attenuation refinement, based
on Rada's work (1984; 19851 and considers their convergence
properties using the results obtained in the previous sections;
this analysis is used to suggest methods for the refinement of
attenuations under more general conditions than those described
in the previous section.

Synthesis of attenuations when 2rinciDal paths are known

In this section, all non-identity attenuations are at the
leaves, without loss of generality. (See section 2,
"independent attenuations,a in chapter 4.)

It is easy to synthesize attenuations in a MIN/MAX tree
with n inputs, if n tests with different. known principal
paths are given.

94

95

For example:

(a) in the case for which attenuations are restricted to
be 0 or 1, n tests are given that have input equal to output
for only one input, which is different for each test;

(b) in the "real numbers" case, each test has only one
input greater than or equal to the output and this input is
different for each test.

Note that it is no= necessarily easy to synthesize
attenuations if we only have n tests whose i/o ratios are
all different, because that just means that no two tests can
share the same influential path but does not give any
information, in general, as to which path is associated with
each test.

One could try to refine a rule base without changing
influential paths, or, if test cases are misclassified using
the expert-given attenuations, one could first try to modify
attenuations in such a way that:

(a) the test cases are correctly classified;

(b) principal paths are the same as with the expert-given
attenuations.

If no satisfactory refinement were possible, while
keeping influential paths unchanged, one could try changing
the assignment of principal paths and solving a similar
problem with a new assignment of principal paths. For such
an approach to succeed, it is necessary that the following
problem be solvable quickly.

Problem name. Restricted Attenuation Synthesis with
Known Principal Paths (RASP).

Problem instance. A tree with alternating MIN and MAX
boxes, multiplicative 0/1 attenuations, bounded fan-in to
MIN nodes, bounded depth; a set of tests; a principal path
for each test (i.e., a function f from tests to paths).

Remark The set of RASP problem instances is not a subset
of the set of RA problem instances, defined in chapter 5.
However, each RASP instance can be trivially mapped in
polynomial time into a corresponding RA instance by removing
the "principal path for each test" from the RASP instance.
Therefore, the NP-Hardness of RASP implies the NP-Hardness
of RA. Since the proof of NP-Completeness of RASP given
below draws heavily from the simpler proof that RA is NP-

96

Complete, given in chapter 5, both proofs are given for ease
of exposition.

Question. Is there an assignment of attenuations for which
all tests are handled correctly?

Theorem RASP is NP-Complete.

Proof

RASP is in NP, because it can be solved in polynomial
time by a nondeterministic algorithm that loops through all
possible assignments of 0 and 1 to the attenuations. It
must now be shown that RASP is NP-Hard. For this purpose,
it will be demonstrated that MSAT (Monotone 3-Conjunctive
Normal Form Satisfiability) is reducible to RASP, by
providing an algorithm that builds, in polynomial time, an
instance of RASP given an expression E in MSAT, such that
the RASP instance is a yes-instance if and only if E is
satisfiable. (MSAT is defined in section 2 of chapter 5.)

Let E be a MSAT expression with m clauses and n distinct
variables. Build a tree as shown in Figure 9.1 below.

97

MAX

Figure 9.1 Generic RASP instance

There are 3+3n+2m tests for the RASP instance, built as
follows. The first test has .5 in position 0, .9 in
positions 1 through 4n+2, 0 in position 4n+3 and output .5.
The second test has .6 in position 0, .9 in positions 1
through 4n+2, 0 in positions 4n+3 and output .6. The third
test has 0 in positions 0 through 4n+2 and .2 in position
4n+3 and output .2. (These three tests insure that any
solutions must have a0 a 4n+3' 1 .)

m tests are built as the clause tests in the proof that RA

98

is NP-Complete (in section 2 of chapter 5), except that each
test is extended to the left with .5 and to the right with .4;
the output for each of these tests is .5. m tests are built as
the clause tests in the proof that RA is NP-Complete, except
that each test is extended to the left with 1 and to the right
with .8; the output of each test is .8.

n tests are built as the first n variable tests in the proof
that RA is NP-Complete, except that each test is extended to
the left with 1 and to the right with .2; the output of each
test is .2. n tests are built as the last n variable tests in
the proof that RA is NP-Complete, except that each test is
extended to the left with 1 and to the right with .7; the
output of each test is .7. Finally, n tests are built as the
preceding n, except that each test is extended to the left with
.5, to the right with .4, and the output of each test is .5.

To complete the description of the RASP instance, the
principal paths for the tests will be specified as follows:
the principal path (PP) for the first and second tests
includes a-; the PP for the third test includes a ; the
PP for the next m tests includes a,; the PP for tAR+Aext m
tests includes a4n+3; the PP for t e last 3n tests includes
a4n+3 "

An example of how MSAT instances are mapped into RASP
instances is given below. Each clause in the example contains
only two literals, for ease of presentation.

Example 9.1

The MSAT instance is E-(x vx)&(-x vx). (Therefore, m=2,
n=2.) The corresponding RASP iAstancl i shown in Figure 9.2.
T and T force a to be 1; T forces a1 to be 1; T4 and T are
tie clauie tests gorrespondina to (x vx); T6 and T are the
clause tests corresponding to (-xv-12)f T T9, ana T1 0 are
the variable tests corresponding to x1 ; T11 , T12, and +0 are
the variable tests corresponding to x2.

V ii w~ ~2*

99

I~I

IMI

output

T 5 .9 .9 .9 .9 .9 .9 .9 .9 .9 .9 0 .5
T2 .6 .9 .9 .9 .9 .9 .9 .9 .9 .9 .9 0 .6
T3 0 0 0 0 0 0 0 0 0 0 0 .2 .2
T4 .5 .6 .6 0 0 0 0 0 0 0 .9 .4 .5
T5 1 .6 .6 0 0 0 0 0 0 0 .9 .8 .8
T6 .5 0 0 0 0 .9 .6 .6 0 0 0 .4 .5
T7 1 0 0 0 0 .9 .6 .6 0 0 0 .8 .8
T8 1 .6 0 0 0 0 .6 0 0 0 0 .2 .2
T9 1 .6 0 .9 0 0 .6 0 .9 0 0 .7 .7

T10 5 .6 0 .9 0 0 .6 0 .9 0 0 .4 .5
T11 1 0 .6 0 0 0 0 .6 0 0 0 .2 .2T12 1 0 .6 0 .9 0 0 .6 .9 0 0 .7 .7
T13 5 0 .6 0 .9 0 0 .6 .9 0 0 .4 .5

Figure 9.2 RASP instance corresponding to (X1 Vx2)&(-xlv-x 2)

100

(End of example)

To simplify presentation, redraw the network in Figure 9.1
as in Figure 9.3:

MAX

MIN

IV AX 4.n2 4+3

a1 ... a a 4

2+1

Figure 9.3 Generic RASP instance, redrawn

101

Consider the tree rooted at d. The purpose of the first
three tests has been explained when they have been defined.
The following 2m tests are built in such a way that in each
yes-instance of RASP, the value of d for each test is .6,
since the first m tests insure that that the value is
greater than .5, the second m tests insure that the value is
less than .8 and the only possible values are 0, .6, and .9.
Similarly, the next n tests are built in such a way that the
value on d is 0 and the last 2n tests are built in such way
that the value on d is .6.

Therefore, the RASP instance is a yes-instance if and
only if the RA instance, built as in the NP-Completeness
proof of RA, is a yes-instance. But this RA instance is a
yes-instance if and only if E is satisfiable. Therefore,
the RASP instance, for whose construction a polynomial-time
algorithm has been given, is a yes-instance if and only if E
is satisfiable. This completes the proof that RASP is NP-
Complete.

(End of Theorem)

Problem name. Restricted Attenuation Synthesis with Real
CF's and Attenuations with Known Principal Paths (RAPRP).

Problem instance. A tree with alternating MIN and MAX
boxes, multiplicative attenuators with real weights at the
output of MIN boxes, bounded fan-in to MIN nodes; bounded
depth; a set of tests; a principal path for each test (i.e.,
a function e from tests to paths).

Theorem 9.2 RAPRP is NP-Hard.

Proof.

The proof is an adaptation of the proof that AS is NP-
Hard, in section 2 of chapter 5, modified as in the proof
that RASP is NP-Complete. Details are left to the reader.

(End of proof)

In order to extend the problem corresponding to RASP (and
RAPRP) to the MIN/p+ case, it is convenient to introduce a
definition, which we first motivate with the following
example.

Example 9.2

a s~~~~VT WXWS. uNW- -- wna..-

102

0

a b

VI 2

Ii12 i3 i4

Figure 9.4 Sample MIN/p+ inference tree

Consider the input part and the MIN/p+ tree in Figure
9.4. The following certainty factors flow in the tree:
v ='6' v - .4, o - .6a~p+].4b. Clearly, there is no
iffluentiai path in this example, since o is not equal to
.6a or .8a or .5b or .4b. However, the output of the tree
is equal to the output of the tree in Figure 9.5, which has
no MIN boxes.

103

10

a b

.6 .4

Figure 9.5 Influential bundle for the tree in Figure 9.4

(End of example)

In general, given an input part and a MIN/p+ tree, it is
possible to define the MIN/p+ tree, without MIN boxes, which
has the same output of the given MIN/p+ tree for the given
input part.

Definition 9.1 Given a MIN/p+ tree and the input part of
a test, an Influential tree is a tree obtained by (1)
removing each MIN boxes, starting from the ones closest to
the leaves, and substituting the MIN box with the line on
which flows the smallest CF value; (2) removing from the
tree obtained in this way all subtrees whose root carries a
CF of value 0. An influential tree is also called an
Influential bundle, a DrinciDal tree or a principal bundle.

Note that there may be several influential trees for a
given tree and input part, depending on the tie-breaking
rule used, as in the following example.

The tree and input part shown in Figure 9.6(a) have the
influential bundles indicated in Figure 9.6(b) and Figure
9.6(c).

-. ' '

104

.7 .7

1/5 1/5 (b 1/6 1/6()

.5 . .5 .6 .66 .

Figure 9.6 Inference tree and its influential bundles

(End of example)

105

It is also-possible that an influential tree collapse
into an influential path, as in the following example. In
fact, tests that obtain this result were used in the
algorithm described in section 5 of chapter 4 ("synthesis of
attenuations: MIN/probabilistic sum case").

ExAMIP 9b4

The tree and test shown in Figure 9.7(a) have the
influential bundle shown in Figure 9.7(b).

10P°

0

a

b

MIN MIN

.5 0 .3 .8 .3

(a) (b)

Figure 9.7 Inference tree and its influential path

(End of example)

One can only consider tests for which influential trees
collapse into influential paths to show that the synthesis
problem with known principal bundles is NP-Hard, since
influential paths are a special case of influential bundles.
The problem is formalized below.

Problem name. Restricted Attenuation Synthesis with
Known Principal Paths, MIN/p+ case (RASPp+).

Problem instance. A tree with alternating MIN and p+
boxes, multiplicative attenuators with real weights at the
output of MIN boxes, bounded fan-in to MIN nodes, bounded
depth; a set of tests; a principal path for each test (i.e.,
a function f from tests to paths).

106

Theorem 9-3 RASPp+ is NP-Complete.

Proof.

This proof is only sketched, since it is similar to the
precediag two.

RASPp+ is in NP.

MIN

Figure 9.8 Generic RASPp+ instance

RASPp+ is NP-Hard. This proof follows the same line as the
proof that RASP is NP-Hard: we build a network and a set of
tests such that RASPp+ not being NP-Hard would imply that RAP
is not NP-Hard. (The proof that PAP is NP-Hard is given in
section 3 of chapter 5.) The network is the tree shown in
Figure 9.8. The input parts of the tests in the RASPp+
instance, as the reader may have guessed by now, are made of
the juxtaposition of the input parts of the tests in the RAP
proof, the output of those tests, and 0. The output part of
each test is the same as the output part in the corresponding
test for RAP. In order for each test to be satisfied, the

107

output of the "box as in the RAP proof" must be .6 or .7, as if
the rest of the net did not exist.

(End of Proof)

Za = The proofs in this section require that all tests
share only two principal paths. However, it should appear
evident to the reader that similar proofs could be given for
which only an arbitrarily small fraction of all (leaf)
attenuations is not on the principal path of some test.

Rfinement from good estimates

Definition 9.2 A C&K assignment of attenuations for
a set of tests is an assignment of attenuations for which
all tests are (precisely) satisfied.

amak In the I4IN/MAX case, the error on the output CF
(for a given test) is linearly related to the error on the
attenuation on the principal path for the test. (Recall
from chapter 4 that one needs to consider only one
attenuation for each principal path.) In particular, the
error on the output CF is less than the error on the
attenuation on the principal path, if all CUs and all
weights are between 0 and 1. (See Figure 9.9.) This holds
even if the error is so large that the principal path with
erroneous attenuat ions is not the one that would be
principal if all attenuations were correct: in this case,
the error is no more that the error on the attenuation on
the path that is principal with erroneous attenuations.

108

/utput CF

/principal path

attenuation

input CF

Figure 9.9 Error propagation

In the problems discussed in this section, it is always
assumed that a correct assignment of attenuations exists for
the tests in the problem instance. This is done in order to
simplify presentation of the problems, since the NP-Hardness
results that will be proven hold for problems that include
instances for which no correct assignment of attenuations
exist.

Problem name. Epsilon refinement (ER).

Problem instance. A tree with alternating MIN and MAX
boxes, multiplicative attenuators with real values at the
output of MIN boxes, fan-in to MINs equal to 2, depth 3; a
set of tests; a constant epsilon; an assignment of
attenuations, each of which is at most epsilon away from the
correct one.

Question. Find the correct attenuations.

The decision problem corresponding to ER is introduced now.

Problem name. Epsilon refinement, decision version (ERD).

Problem instance. A tree with alternating MIN and MAX

109

boxes, multiplicative attenuators with real values at the
output of MIN boxes, fan-in to MINs equal to 2, depth 3; a
set of tests; an assignment of "expert-given" attenuations;
a constant epsilon (indicated e in the following).

Question. Is there an assignment of attenuations for
which all tests are handled correctly, such that each
attenuation is at most epsilon away from the expert-given
one?

ER is reducible to ERD. Informally, if one could quickly
find the correct attenuations, one could quickly answer
whether the correct attenuations exist. Therefore, if ERD
is NP-Hard, so is ER.

Theaorem2. ERD is NP-Hard, for any positive value of

epsilon.

Proof.

(This proof is similar to the proof that RA in NP-
Complete in section 2 of chapter 5.)

Monotone 3-Conjunctive Normal Form Satisfiability (MSAT)
is transformed to ERD. Given an instance of MSAT, i.e. an
expression E in monotone 3-conjunctive normal form, the
following algorithm will produce in time polynomial in the
size of E an instance of ERD such that the Question has
answer yes if and only if E is satisfiable.

Let n be the number of distinct variables in E, m the
number of clauses in E. (n and m can be obtained in
polynomial time from any "reasonable" encoding of E.)

The tree of (the) ERD (instance) has three levels: a MIN
box, two MAX boxes under it, attenuators under the MAX
boxes. There are 2n+1 attenuators under each MAX box,
numbered 1 through 4n+2. (See Figure 9.10.) (The tree has
size polynomial in n and therefore in the size of E.)

110

0

MIN

2n 2n+1 2n+2 .. 4n+1 4n+2

4k A- Figure 9.10 Tree of the generic ERD instance

Name the variables in E x, x2,#...,xn
There are 3n+m+l tests for the ERD instance. All expert-

given attenuations in the ERD instance have value a, wheree<a<l-e, except for the attenuations in positions 2n+l and
4n 2, which have value 1.

Let s be a value, such that 0<s<1. Let u-e/2. Letk k2be distinct values such that k (a+e)>=s(a+u)>ki (a-e), il .
(s,kl,k 2 will be used as CF values in tests.) '

One test in the ERD instance has all inputs set to 0
except inputs 2n+1 and 4:.42, which have value s; the output
has value s. This test insures that any solution to ERD has
these attenuations set to 1. (See Figure 9.11)

Jr

°.1

111

1 2 ... 2n 2n+1 2n+2 ... 4n+1 4n+2 output

0 0 ... 0 s .0 ... 0 S s

Figure 9.11 Test of the generic ERD instance

Each clause in E has one test corresponding to it in ERD.
This test has all inputs set to 0 except (a) if the clause is
positive and contains literals x4 1 , xi9 , x42 , inputs i1 , i.,
i have value s, input 4n+2 has Qalue ; t1w output is s(au)
(9) if the clause is negative and contains literals -x , x
-x13, inputs 2n+l+i , 2n+l+i , 2n+l+i 3 have value s, iAlut 19+1
hag value 1; the output is sia+u).

It is a fact that, if a clause with literals xi., x12 l
x4 (-x4, -xi?,-x) is satisfied in isolation,'ihe
c6Irespfiding test Zrces all of the attenuations in
position i ig, i (resp. 2n+l+i 2n+1+i, 2n+i+i 3) to be
at most a+l, a d a2 least one to Aave valu a+u.

Each variable in E has three tests corresponding to it in
ERD. (These tests are designed to force exactly one of the
attenuations in positions i and 2n+l+i to be a and the other
one to be different from a, but within e of it. Recall
that, analogously, in the proof of RA, pairs of attenuations
could take values (0,1) or (1,0).)

The first test for variable x has all inputs set to 0
except inputs i and 2n+l+i, whicA have value s; the output
is s*a. (See Figure 9.12.) It is a fact that such a test
is satisfied if and only if one of the attenuations in
positions i and 2n+l+i has value a and the other has value
greater than or equal to a.

1 ... i-1 i i+1 ... 2n+i 2n+l+i 2n+2+i ... 4n+2 output

0 ... 0 s 0 ... 0 s 0 ... 0 s*a

Figure 9.12 Test of the generic ERD instance

The second and third test are similar to each other; the
only difference is that k is used in the third test where
k is used in the second gne. Only the second test will be
n~w described. This test has all inputs set to 0 except
inputs i and 2n+l+i, which has value s, input n+i, which has
value k , and input 2n+1+n+i, which also has value k The
output 1f each test is s(a+u). (See Figure 9.13.)

It is a fact that each such pair of tests is satisfied if

112

and only if
(a) the attenuation in position i has value a+u, and

the attenuation in position 2n+l+i has value no less
than a+u, or the attenuation in position 2n+l+n+i has
value no less than s(a+u)/min(k ,k 2), or

(b) the attenuation in position 2n+t+i has value a+u, and
the attenuation in position i has value no less
than a+u, or the attenuation in position n+i has
value no less than s(a+u)/min(kl,k 2).

Recall from section 3 of chapter 4 that a principal input
is the input to a principal path, that is to a path whose
attenuated input is equal to the output. Note that k and k2
have been chosen in such a way that s(a+u)/min(k 'k2th is
within e of a and that k <> k , which insures tAat the
principal input fr the ivo teits is neither n+i nor
2n+l+n+i, by an argument similar to that used in the NP-
Hardness proof fmr AS (section 2, chapter 5).

1 ... i ... n+i ... 2n+l+i ... 2n+l+n+i ... 4n+2 output

0 0 s 0 0 0 s 0 0 0 s*a

0 0 s 0 0 k 1 0 0 s 0 0 k 0 0 s(a+u)

0 0 s 0 0 k2 0 0 s 0 0 k2 0 0 s(a+u)

Figure 9.13 Tests of the generic ERD instance

L mma The variable tests for variable x. are satisfied
if and only if the pair of attenuations in bosition i and
2n+l+i is either (a,a+u) or (a+u,a).

Proof The first test is satisfied if and only if one of
these attenuations has value a and the other has no smaller
value; the second and third test are satisfied only if one
of the attenuations has value a+u.

(End of proof of lemma.)

It will now be shown that E has a model if and only if
the ERD instance built using the algorithm described above
is a yes-instance.

(a) E has a model implies that ERD is a yes-instance.

Assume that E has a model.

Since E is in CNF, each of the clauses is satisfied.

113

We provide-a mapping from the truth values of the
variables in E to attenuations that provide a solution to
ERD. For each variable x.,

(a) if xi=T in the modil, let a (the i-th attenuation)
be a, a2... =a+u, a _=s(a+u)/minikl,k),
a 2n 1 n- /min(k nk), a 2+ia 4n+2=-1.

W) .=F in thi mgdel, e a 2 =a, a =a+u,
a 2n+l+_+i=(a+u)/min(k l , k 2) , a n+i= in(k i k2),
a2n+l-- 4n+2 = 1

It is an easy, although tedious, task to verify that all
tests in ERD are satisfied by this assignment of
attenuations; we leave it to the reader. Moreover, u, k ,
and k have been defined in such a way that all attenuatlons
are within e of the expert-given ones, proving that the ERD
instance built according to the previously described
algorithm is a yes-instance if E has a model.

(b) ERD is a yes-instance implies that E has a model.

Assume that ERD is a yes-instance, i.e., that there is an
assignment of attenuations for which all tests are
satisfied, and this assignment is within e of the expert-
given one.

Consider the pair of attenuations (a.,a)n+.+ Recall
that L is defined as e/2, and e is give a par of the ERD
instance. We claim that the mapping

if (ai,a 2n+l+i)=(a,a+u) then x.=T
if (ai a 2 n+ +i)=(a+u,a) then x1=F

is a model for E.

Firstly, note that, by the Lemma, the mapping is a total
function from the space of variable names to (T,F) (therefore,
an interpretation). (This is the use made of variable tests in
this proof.)

Secondly, note that an interpretation for E is a model if
and only if each clause of E is true under the
interpretation, since E is in CNF. Clearly, if all tests
are satisfied, then all clause tests are satisfied.
Consider generic test T corresponding to clause Cr,
l<=r<=m. If C is a positive clause, C =(x.,, x., x..), Tr
is satisfied if and only if at least on6 of'hex61l!ngr
equalities holds:

a(a i l ' a 2 n + l + i l) = (a ' a u 'a n i i (,a+u) . (a ill'a2n+l+i2l)=(a'a+u),
(a 0 ,a2n+i+i3)=(aia+u).

:.

' hw W .° 5 ' .

114

Therefore,-since the test is satisfied, our mapping will
set one of x.I, x, 2 , x-- to T. Since C is a disjunctive
clause, it il true in dr interpretatioE. The case in which
the clause is negative is analogous: (a+u,a) and F should be
substituted to (a,a+u) and T, respectively. Therefore, each
clause is true in the interpretation we have defined; the
claim has been proven.

(End of proof of theorem.)

An example of the mapping from MSAT to ERD is shown in
Figure 9.14. Only 2-literal clauses are used for clarity of
example.

E - (xlvX2)&(-x V-x 2)

1,21

115

MIN

output

0 0 0 0 s 0 0 0 0 s s

x 1vX2 s s 0 0 0 0 0 0 0 1 s (a+u)

-X 1V-x 2 0 0 0 0 1 s s 0 0 0 s (a+u)

xI s 0 0 0 0 s 0 0 0 0 s*a

s 0 kI 0 0 s 0 kI 0 0 s (a+u)

s 0 k2 0 0 s 0 k2 0 0 s (a+u)

x2 0 s 0 0 0 0 s 0 0 0 s*a

0 s 0 k 0 0 s 0 k 0 s (a+u)

o s 0 k2 0 0 s 0 k 2 0 s (a+u)

Figure 9.14 ERD instance corresponding to (xIvX2)&(-x 1 V-x 2)

(End of example)

A natural question to ask, given the negative result just
obtained, is whether it is possible to improve on a

116

(slightly) incorrect assignment of attenuations. This
problem can be formalized as follows.

Definition 9.3 Given an inference net, the eXro on a
test is the difference between the output part of the test
and the output CF (CFs) obtained by propagating the input
part of the test through the tree (graph).

Problem name. Approximate epsilon refinement (AER).

Problem instance. A tree with alternating MIN and MAX
boxes, multiplicative attenuators with real values at the
output of MIN boxes, fan-in to MINs set to 2, depth 3; a set
of tests; a constant e; an assignment of (expert-given)
attenuations, each of which is at most e away from the
correct one; a constant q.

Question. Find an assignment of attenuations
(a) within e of the expert-given attenuations
(b) for which the error on each test is no greater than

using the expert-given attenuations
(c) for which the error on at least one test is q less than

using the expert-given attenuations, or a non-zero error is
reduced to zero.

Theorem 9-5 AER is NP-Hard, for arbitrarily small e and q.

Proof If this were not the case, the following algorithm
would solve ER in polynomial time. This would contradict
the NP-Hardness of ER, proven previously.

Let k=e/q. Let n be the number of attenuations.

Repeatedly use the polynomial-time algorithm to solve
AER, using the solution to an iteration as the starting
point for the next iteration, until the correct attenuations
are obtained.

Since each time the algorithm is applied at least one
error is decreased by q or a correct attenuation is found
(and therefore at least one attenuation gets q closer to the
correct one or is set to the correct value), in at most n+nk
iterations all errors are 0, i.e., ER is solved.

(End of proof.)

A fast algorithm

In this section, the NP-Hardness proofs presented in the

117

previous section wili be exploited in order to gain insight
into the reason why epsilon refinement and approximate
epsilon refinement are hard.

Definition 9.4 A chie o is a function whose output
is equal to (at least) one of the inputs. (Of course, the
output is equal to more than one input only if at least two
inputs are equal.)

For example, MIN and MAX are choice boxes.

Definition 9.5 A winner~ at a choice box is the input
value that is equal to the output value. (In the case of
output values that are equal to more than one input value,
the winner is chosen arbitrarily among these inputs.)

Definition 9.6 A setting of winners for an inference net
is an assignment of winners to all choice boxes in the
inference net.

From now on in this section, only inference nets with 2-
input boxes will be considered. Definitions 9.7 and 9.8 below
may be extended to nets with arbitrarily large boxes. However,
this extension is not required to obtain the general results
that will be shown, since there is a fast algorithm to convert
a net with multiple-input boxes into a net with only 2-input
boxes, as shown in the following example.

The inference tree shown in Figure 9.15 is given. It can
be transformed into the tree shown in Figure 9.16, because
it is possible to set all attenuations but leaf attenuations to
value 1, as demonstrated in Chapter 4. Finally, each n-input
choice box can be transformed into (n-i) suitably
interconnected 2-input choice boxes as shown in Figure 9.17,
without introducing additional attenuations. Given an
assignment of attenuations for a through a1 A and an input
part for the trees in Figure 9.11 and 9.17,1&h same CF will
flow on line o for both trees. If necessary, the algorithm
described in section 4 of chapter 4 can be used to redistribute
attenuations a hog 4into ateutosx 1 through x16

118

x xo

1 11

Figure 9.15 Converting n-input boxes into 2-input boxes

(initial phase)

119

MIAX

Figure 9.16 Converting n-input boxes into 2-input boxes

(intermediate phase)

[.

120

0

MAX

MIN MIN

MA MXMXMAX MAX

MAXMA

aa a a a a a a a a a a a a

Figure 9.17 Converting n-input boxes into 2-input boxes

(final phase)

(End of example)

121

Definition 9.7 A loser at a 2-input choice box is the
input value that is not equal to the output value. In the
case of a tie, the loser is chosen to be the other value
with respect to the arbitrarily chosen winner.

Definition 9.8 A switch mettina for an inference net
with 2-input boxes is a setting of winners (or,
equivalently, of losers) for the inference net.

Note that the NP-Hardness proofs in the previous section
do not carry through if the problem instance is augmented to
include as input a switch setting for the tree. This
observation leads to the definition of the following search
problem. (The reader can imagine what the corresponding
decision version is.)

Problem name: Attenuation synthesis, no-switch case (ASN)
(Search version).

Problem instance: A tree with 2-input MIN and MAX choice
boxes, multiplicative attenuators with real values at the
output of MIN boxes; a set of tests TS-(T1 ,...,T4}; a switch
setting for each test in TS.

Question: Find an assignment of attenuations compatible
with the switch setting, such that all tests are satisfied,
if such an assignment exists.

Algorithm 9.1

(The algorithm has as input an instance of ASN and returns
an assignment of attenuations, as requested in the Question for
ASN, if such as assignment exists. It ends in failure at step
2, if such an assignment does not exist. Let n be the number
of leaf attenuations, defined in section 2 of chapter 4, in the
tree.)

1. For each test, T , and each choice box, set up a 2-
variable linear inequality as follows: let ai *i4, be the
winner at the choice box; let a *i2 be the losi. If the
box is a MAX box, let the inequ&litj be a4 *ii >=a ii*i 2. If
the box is a MIN box, let the inequality B a *i; =aj*i
Add 2n inequalities a >-O, a<-I, i in e,...,M. iThe aE' at
most 3n-1 inequalitiei for each test, since there are n-l
choice boxes in a complete tree with n leaf attenuations,
i.e., n/2 leaf choice boxes.)

2. Solve the system of inequalities obtained in Step 1.

(End of algorithm)

122

Theorem 9.6 Let n be the number of leaf attenuations
(defined in section 2 of chapter 4) In the tree. Let m-n*J.
Algorithm 9.1 solves ASN in 0(mlogmn (Recall that j is the
number of tests in the ASN instance.)

Proof

It is clear by the construction in phase 1 of the
algorithm that a solution to the system of linear
inequalities is a solution to ASN and that no solution to
the ASN instance exists if the system of linear inequalities
is unsatisfiable.

Khachiyan (1979] presents an algorithm to solve a system of
linear inequalities in polynomial time. However, faster
algorithms are known for the case in which only 2 variables per
inequality are present. Some of these algorithms are
particularly interesting, because they require polynomial run
time independently of the encoding scheme used to represent the
coefficients of the linear inequalities, whereas Khachiyan's
algorithm requires the use of a particular such scheme, the
binary encodina scheme. Johnson [1983] and Megiddo [1982]
discuss the binary encoding scheme and real arithmetic model.
In particular, Megiddo proves that there exist encoding schemes
that are as efficient as the binary encoding scheme, but with
respect to which Khachiyan's algorithm for linear programming
is exponential. Johnson describes the real arithmetic model
for linear programming as the model in which each arithmetic
operation has unit cost and run-time is expressed as a function
of the number of variables and constraints. Megiddo (19831
presents an algorithm to solve a system of linear inequalitiee
with m-n*j inequalities, n varilbles, and at most 2 variables
per inequality in time 0(mlogmn). Since constructing the
system as done in phase 1 of the algorithm takes only time
O(m), the claim holds.

(End of theorem.)

The previous theorem indicates a way to exploit expert-
given attenuations in refining attenuations. The expert-
given attenuations to be refined should be used to compute
winners at each box for each test. The inequalities are set
up assuming that winners do not change when attenuations are
changed from the expert-given estimates to the correct ones.
If the expert-given attenuations are close enough to the
correct ones to be accurate predictors of winners, this
technique is successful.

The following examples illustrates the procedure
informally described above; it is expected that the reader

123

will easily succeed in filling in the missing details.

MIN

MAX MAX

1 3 4

Figure 9.18 Inference tree for example 9.7

Consider the inferencg tree in Figure 9.18. The expert-
given attenuations are L =(.5,1,.4,.4). The test set consists
of the single test T1

Assuming that winners do not change with respect to the
ones given by the expert-given attenuations, one has the
following system of 7 inequalities and one equality:

.8x 3-.1-0 (This corresponds to the principal path for TI.)

.6x 1 <- .5x2

.8x3 >W .2x4
ex <: .5x0<-R <-l,* ip,..,4.

This system has an infinite number of solutions, for example:

x-(.5,1,1/8, .4).

(End of example)

Exam~la 9.

124

MIN

IA(

Figure 9.19 Inference tree for example 9.8

Consider the inference tree in Figure 9.19. The expert-
given attenuations are L - (.5,1,.4,.4,.6,.4,.5). The test
set consists of the single test
T - ((.6,.5,.B,.2,.7,.6,.9),.4). Assuming that winners do
n~t change with respect to the ones given by the expert-
given attenuations, one has the following system of 13
inequalities and one equality:

.8x3-.1-0 (This corresponds to the principal path for T1.)

.6x. <- .5x2.8xl >- .x

.8x 3 >-.2x 4.8x: <= .5x 2

.7x 5 >- .6x6

.7x 5 <- . 9x 7

.8x < . 9x7
6<-^i <=11ir , ... ,7

A solution to this system is, for example,
L-(.6, .5, .5,.4, .6, .4,.5)

(End of example)

It can be noted that a sufficient and (in the worst case
over distributions of input values) necessary condition for
the expert-given attenuations to be good winner predictors
is that each (attenuation'input) product be 2e away from any

' .' d -.

125

other, where t is the maximum error on expert-given
estimates.

* What should be done when the estimates for winners
obtained from the expert-given attenuations are not correct?

* And how should one provide for the possibility that there is
no solution to satisfy the given tests, possibly because of
noise in the tests themselves? These questions will be
addressed in the following section.

Iterative algorithms

Several algorithms will be now presented. These
algorithms all iterate a basic step, which is different for
each algorithm. Each step consists of the selection of a
path in the tree (graph) and of the adjustment of the weight
(weights) on that path. Unless specified otherwise, we will
present the algorithms that operate on trees.

Algorithm 9.2

Until convergence for each test
find a principal path (break ties

arbitrarily) modify the attenuation
on the PP in such a way that PP's
output is test's output

This algorithm does not converge when a solution does not
exist. Just picture the case in which the tree is a chain
and two tests are given with the same input but different
outputs. Of course, because of the NP-completeness result
shown in section 2 of chapter 5, it must be that the
algorithm is slow or non-convergent on some cases for which a
solution exists. A measure of the "quality" of these

* algorithms is the number and nature of the cases in which they
either are slow or do not converge at all. We also know that

* there are no fast algorithms that can provide a (suitably
9 defined) approximation in all cases, so that we cannot expect

any iterative algorithm to converge (in a suitable sense) in a
short time in all cases. In this respect, the first algorithm

* does not seem very good. Here are two examples in which this
algorithm does not converge at all, but a solution exists.

The first example involves two tests sharing the same
incorrect principal path. Since no step ever causes a
change in principal path, the algorithm never terminates.

126

0

MAX

a1 a a 3

iii 1 2 3

Figure 9.20 A tree on which Algorithm 9.2 fails

The inference tree is shown in Figure 9.20. The expert-
given attenuations are aE=(.7,.4,.5). The two tests are
T =((1,.9,.5),.8) and T =((1, .5,.7),.6). The value of
atenuation a would ingefinitely switch between .8 and .6,
while there eists an infinity of solutions a=(t,8/9,6/7),
where 0<=t<=.6.

(End of example)

Example 9.10

Three tests are involved in the second example. This
example shows that it is possible for the algorithm to loop
infinitely on a triplet of tests, even when no pair which is
a subset of the triplet would cause nontermination.

VL40 1 2n; %41 .e% -Vv

kO

127

10

MMX

aa a 3 a4 a5

Figure 9.21 A tree on which Algorithm 9.2 fails

The inference tree isEshown in Figure 9.21. The expert-
given attenuations are & =(.7,.51,.1,.1,.1). The three
tests are T=((l,0,1,0,0),.75), T2=((0,1,0,1,0),.4),
T =((l,1,0,6,1),.6). Algorithm 9.2 would never terminate on
tAis example: a would be set to .75, and a would
indefinitely switch between .4 and .6, whili there exists a
class of solutions, including (0,0,.75,.4,.6).

(End of example)

One would like to say that in these examples and in all
the cases in which Algorithm 9.2 does not converge the expert-
given estimate for the weights is a "bad estimate," but no
simple characterization of this has been found.

The following two algorithms are based on Rada's work
(Rada, 1985]. In order to state these algorithms, one needs
to define some properties of attenuators: TooMuch, Perfect
and TooLittle. For each weight, TooMuch is the number of
tests for which the outcome of the system is greater than
the desired output, and the weight is on a princiRal Rath.
TooLittle and Perfect mean just what one would expect, given
the definition of TooMuch. Because of the qualification
that the weight be on a principal path,
TooLittle + Perfect + TooMuch is not necessarily equal to
the number of tests for each attenuation. Each iteration in

V V~ ~ V

128

Rada's algorithms is more complicated than in Algorithm 9.2.
It consists of running all cases on the system and computing
the values of TooMuch, Perfect, and TooLittle for each
attenuation. The attenuation to be modified during the
current iteration is chosen according to these values, in
different ways for each of the two algorithms.

Algorithm 9.3

Until convergence compute TooMuch, Perfect and TooLittle
for each attenuation

if TooMuch - TooLittle - Perfect > 0 then
decrement the attenuation

else if TooMuch - TooLittle - Perfect < 0
then increment the attenuation

Algorithm 9.4

Until convergence compute TooMuch, Perfect and TooLittle
if there is an attenuation for which TooMuch > 0,
TooLittle=Perfect=0

then decrement it else increment the
attenuation with the lowest value of

Perfect+TooLittle

It is easy to find examples for which Algorithm 9.3
fails: in fact, it fails on both Examples 9.8 and 9.9 (on
which Algorithm 9.2 also fails). Here is an example of a
case in which Algorithm 9.4 fails.

Example 9.11

In this case, the algorithm terminates without finding a
solution, whereas a solution does exist.

I %'r W, qI

129

10

MIN

a1 a a
2 3

1 2 3

Figure 9.22 A tree on which Algorithm 9.4 fails

The inference tree is ghown in Figure 9.22. The expert-
given attenuations are A =(.7,.4,.5). The two tests are
T-((1,.9,.1),.75) and T=((1,.8.,8),.6). (In the
f1llowing, p stands for Perfect, tl for TooLittle, tm for
TooMuch.) On the first iteration, p[a 1]=tl[a 1-0,
p[a 3-tl[a 1=2, p[a I=tl[a,]=0. Weights a1 aAd a' get
inciementeg to 1, bicause heir p+tl is lolest. a2 gets
incremented next. It is the only attenuation that can get
incremented; however it is incremented, a situation in which
tm[a 1>0 can never be reached, and therefore a cannot be
decrimented. This insures that a solution canAot be found,
whereas solutions like (1,1,3/4) do exist.

(End of example)

The algorithm presented here all fail, because they do
not switch winners--in particular, they do not switch
winners on principal paths. In particular, consider
Algorithm 9.2. For the example on which this algorithm
fails, a should be on the principal path for T and a3
should bi on the principal path for T but a remains
principal for both tests; again, the ilgorithA is unable to

* force a switch (of winners) for the given tests. Algorithm
9.3 works just like Algorithm 9.2 on the example considered.

- . -z -- r. ,. .- i ;..., ''.;':'.;:.€.-:.

130

Algorithm 9.4, on the example given above, is unable to
force a switch between a2 and a3 *

Therefore, these iterative algorithms are poor in that,
while using the estimates to predict the "next switch
setting," are unable to consider all switch settings, even
for simple examples.

An algorithm that finds a solution if it exists must
search the space of switch settings in such a way that &Ul
of them are eventually tried. The expert-given attenuations
provide a starting point for this enumeration. The best
ordering, given a suitable model of expert error, is to try
first all switch settings in which exactly one switch is set
differently from the expert-given one, then all switch
settings are set differently, and so on; within each class
of switch settings, the first switch setting to be changed
is that for which the margin of victory is the smallest.

Different models of expert error will lead to different
enumeration orderings for switch settings. Moreover,
standard techniques could be used to reduce the number of
settings to be tested. This is an area for further
research, possibly of an empirical nature.

CHAPTER TEN

CONCLUS ION

Introduction

This last chapter contains two parts: a personal assessment
of the results contained in the thesis and a discussion of open
problems.

Assessment of results

I will not summarize the results here, since this was
already done in chapter 1. Instead, I will try to give a
personal assessment of the results obtained.

Here is a list of lessons, with an indication of the
chapters or sections where the related results are discussed:

(1) Perfect experts are (quantifiably) better than cases,
or, if one prefers, complete information is better than
incomplete information to solve the synthesis problem.
(Compare chapters 4 and 5.)

(2) Providing information on intermediate hypothesis
(quantifiably) simplifies the synthesis problem and makes it
computationally tractable. (However, it places a much heavier
burden on the team composed of the expert and the knowledge
engineer.) (Compare section 8.3 with 5.2.)

(3) Attenuations that are not closed under composition are
difficult to synthesize. (Chapter 6)

(4) Synthesis from cases is intractable, even for simple
network topologies. (Chapter 5)

(5) Refinement from cases is difficult, even for simple
network topologies and estimates that are very close to correct
weights. (Chapter 9)

(6) Synthesis from perfect experts is easy for simple
* topologies (chapter 4), but it becomes intractable for more

complex topologies. (Chapter 7)

* 131

132

It has been said that "everything we want to do is either
NP-Complete or undecidable, i.e everything interesting is too
hard" [Brachman, 1986]. To some extent, this thesis confirms
the "folk theorem" so clearly stated by Brachman. Still, it is
my judgement that the field of expert systems is badly in need
of formalizations that make it possible to apply established
techniques of "mainstream" Computer Science.

The main lesson that I derive from this work is that it is
unlikely that large expert systems can be built using MYCIN-
like rules. (Here, "large" may mean over two or three thousand
rules.) Users of expert system shells hope that practical
tools will soon be developed "to refine or add to the knowledge
base as the intelligent system has new experiences" [Hafner,
1986]. This expectation is unfounded. It seems more sensible
to pursue, as done in recent commercial developments [Richer,
1986], the approach of encouraging modularity and the use of
multiple formalisms to keep the size of individual rule bases
down.

Directions for further research

There are several variants of the synthesis and refinement
problem that have not been considered in this thesis, but which
seem to be of practical interest.

The first variant may be called refinement with rigidities.
Some rule attenuations are considered less tunable than others,
because of explicit indication by the expert, of past
experience with those rules (perhaps in other rule bases), or
to simplify refinement. This last possibility is especially
intriguing. Refinement could be confined to a subset of all
the rules. However, the results in chapter 7 show that, at
least in some instances, even the determination of one rule
attenuation is very difficult.

The second variant may be called refinement with noisy
tets. If the assumption that the test cases are all correct
does not hold, one has to account for the possibility of noisy
tests. This is especially possible if the tests are collected
automatically, rather than from cases screened or designed by
an expert. Two approaches to the solution of this problem are:
either satisfy only a subset of the test cases, or compromise
on exact performance on all tests. In this second approach,
one would minimize both the distance between the expert-given
attenuations and the refined attenuations and the distance
between the goal CFs as given in the test cases and as
concluded by the system. There should be good reasons to

133

conclude that some or all tests are noisy, because the
inability of the system to satisfy all tests correctly may be
due to errors in the structure of the rules, rather than to
noise in the tests. See [Saitta, 1984], esp. p.102 for some
additional discussion. The first approach will be discussed in
one of the sections on open problems, entitled umaximum
compatible set of tests."

The three sections that follow describe three open problems
and contain some initial results. The first section,
"truncated multiplication," is probably the least interesting
for applications. I suspect that it may provide a challenge to
a researcher in number theory. The problem described there was
first attacked by Albert Nigrin (1984].

Open Droblems: truncated multiplication

Truncated multiplication is a special case of function which
is not closed under composition. It was shown in Chapter 6
that the synthesis of attenuations which are not closed under
composition in an NP-Hard problem (even for chains), but this,
of course, does not imply that the synthesis of attenuations is
NP-Hard when a specific class of functions that are not closed
under composition is chosen as the class of attenuation
functions.

Definition 10.1 A truncated multiplication of order m is a
function f: A -> A, such that f(n) = floor(x*n), 0 <= n <- m, 0
<= X <= 1.

Example 10.1

All the truncated multiplications of order 4 are shown, in
tabular form, in Figure 10.1.

Re .

134

f 1 f 2 f 3 'f 4 f 5 f 6 f7

4 4 3 2 2 1 1 0

3 3 2 2 1 1 0 0

2 2 3 1 2 0 0 0

1 1 0 0 0 0 0 0

Figure 10.1 Truncated multiplications of order 4

(End of example)

Note that there are as many truncated multiplications of
order m as there are Farey f5actions of order m. Therefore
there are approximately .3*m truncated multiplications of
order m [Hardy and Wright, 1979, p.268]. Each truncated
multiplication corresponds to a Farey fraction, in the sense
that f (n) - floor(F.*n), where F is the ith Farey fraction.
For example, for truAcated multiplications of order 4,
f2(n) = floor((3/4)*n).

The synthesis problem can be stated as follows.

Instance: An integer m, a finite function h: A -> A, where
A = (0,1,...,m).

Question: Is there a composition of truncated

multiplications of order m that is equal to h?

Example 10.2

A particular instance of this problem is the following.
Is there a composition of truncated multiplications of order
4 that is equal

4 -> 2
3 -> 1

to h= 2 ->0 ?
1 ->0
0 ->0

Recall that the truncated multiplications of order 4 are
given in the table example 10.1. Note that h is different from
each of f through f7 . Also, the answer is "yes," since h is
equal to ihe composition of f2 with itself.

70 e 2

135

(End of example)

One could wonder why truncated multiplication is an
interesting choice for attenuations. Of course, one could just
answer that it is as good a choice of attenuators as any, but
the motivation for studying it is that it can be considered as
a simulation of real multiplication on a computer: computers
only approximate real multiplication and it can be argued that
they actually perform truncated multiplication. It must be
noted, though, that the error due to rounding is at worst
linear when numbers are multiplied. In fact, techniques exist
to control errors in a series of multiplications (Kulisch and
Miranker, 1981; 1983].

It would be interesting to know whether the truncated
multiplication problem is NP-Hard. One would expect that the
truncated multiplication problem would have been studied and
possibly solved in the context of computer arithmetic, so the
author posted a note on Usenet's "net.math" newsgroup,
expecting some pointer to the published literature. Several
people replied, from places as far away as Carnegie-Mellon
University and the CWI (Center for Applied Mathematics) in
Amsterdam, but no solutions were known or found. However,
Charles Simmons from Dartmouth came up with five conditions,
which he conjectured to be necessary and sufficient for
functions that are composed of truncated multiplications. Here
is the conjecture: A function h is the composition of
truncated multiplications if and only if:

(1) h (0) = 0
(2) h(1) = 0 (unless h is the identity function)
(3) if n >= 2 then h(n) <= n-2 (unless h is a truncated
multiplication)
(4) h(n+l) <= h(n) + 1 (the function cannot grow too
quickly)
(5) h(a+b) >= h(a) + h(b) (the function cannot grow too
slowly).

I

136

Simmons showed that these conditions are necessary. (All
proofs are by induction.) Unfortunately, the conjecture that
the conditions are also sufficient is false. A counterexample
is that the following function, which passes all five
conditions, is not a composition of truncated multiplications
(of order 10):

10 -> 7
9 ->6
8 ->5
7 ->4
6 ->3

h= 5->2
4 ->2
3 ->1
2 ->0
1 ->0
0 ->0

This can be shown by branch and bound search.

Open Droblems: maximum compatible set of tests

Consider the situation in which we are satisfied with an
expert system that handles correctly only a subset of a given
set of tests. There are several possible reasons why this may
be acceptable: for example, it may be known that a fraction of
the tests is incorrect ("noisy") or it may be important to have
a small number of rules, even at the price of inaccuracy, for
reasons of efficiency. In this situation, it is important to
know how many tests are correctly handled by the expert system
without changing setting of winners (as defined in section 4 of
chapter 9 ("a fast algorithm"). A formalization of the problem
follows.

Problem name. Maximum set of compatible tests, decision
version (MSCD).

Problem instance. A tree with alternating MIN and MAX
boxes, multiplicative attenuators with rational values at the
output of MIN boxes, bounded fan-in to MINs; a set of tests,
TS; as assignment of (Nexpert-given") attenuations; an integer
M.

Question. Is there a subset S of TS of size greater than or
equal to M such that:

(a) all tests in S are satisfied;
(b) no switches occur at choice boxes, with respect to what
indicated by the expert-given attenuations.

rwrWVV -A KV P

137

The Densest Hemisphere Problem (DHP) is solvable in
polynomial time (Johnson and Preparata, 1978]. (Johnson and
Preparata also show that the corresponding search problem is
solvable in polynomial time.) DHP asks whether there is a
subset of a given set of linear inequalities that has a
solution and has cardinality larger than a given number. DHP
is related to MSCD, because in the formalization given in
section 4 of chapter 9 ("a fast algorithm") each test is a set
of linear inequalities. However, in MCSD one has to consider
subsets of tests, i.e., subsets of sets of linear inequalities,
not simply subsets of linear inequalities. This leads to the
conjecture that MCSD is NP-Complete and its associated search
problem is NP-Hard.

Open problems: refinement with probabilistic sum

The section entitled "A fast algorithm" in chapter 9
presents a fast algorithm to solve the incomplete case for
trees with MIN/MAX combinators and integrators when a condition
on the winners at choice boxes holds. (See that section for
details.) Now, it will be shown that the obvious
generalization of that algorithm to the MIN/p+ case leads to a
very slow algorithm.

Consider the incomplete test case in MIN/p+ trees. This is
known to be a NP-Complete problem (or NP-Hard, depending on the
CF alphabet and the choice of attenuations). A slow algorithm
to solve this case is presented here.

Let an inference tree (suitably defined) and a set of tests
be given.

Algorithm 10.1

1. Choose influential bundles for each test. (The
definition of influential bundle is definition 9.1.) (This is
analogous to choosing a setting of winners in the MIN/MAX
case.) (Use the best heuristic, for example choose k-undles
that are "closest" to the ones used by setting attenuations to
the expert-given ones. It must be recalled that the problem
remains hard even if the correct influential bundles are known
for each test--see the last theorem in the second section of
chapter 9, "synthesis of attenuations when principal paths are
known.")

2. The resulting constraints contain products of (unknown)
attenuations; call them a , for different i's. Linearize them
by setting each product t a new variable; call each new
variable zi, for a different i. (If the z's are known, the a's

138

can easily be obtained by back-substituting, or by taking the
logarithms of both sides of each equation equating a product of
a's to a z.)

3. To find A solution satisfying the tests, one needs to
solve a linear system in the z's; to find t solution
to the expert-given attenuations, one needs to solve a
quadratic programming problem, if the Euclidean distance is
used.

4. If no solution exists, go to 1. (And choose another

influential bundle.)

(End of algorithm)

Anayis. The analysis concerns only the number of zi's
introduced at step 2, because the other aspects of the
algorithm, notably the choice of influential bundles, are
analogous for the MIN/AX case. In particular, note that the
solution method for quadratic programming problems in
(Gottfried and Weisman, 1973, 214-215] can be followed without
computational troubles if one assumes that no subtrees are
irrelevant, because this is what a zi being equal to zero
translates to in the model.

The number of distinct auxiliary variables ("z 's") is
exponential in the size of the tree, even for trels of small
fixed depth. This makes the above algorithm impractical except
for small problems.

(End of analysis)

Here is an example of use of the algorithm just given.

Example 10.2

Consider the tree, the tests, and the expert-given
attenuations shown in Figure 10.2.

5%

139

10

1 2 3 4

11 i2 i3 14 0

T1 .5 .4 .7 .4 .09

T2 .9 .8 .8 .9 .36

aE,,.2, bE.. 3

Figure 10.2 Instance of the refinement problem with

probabilistic sum

(Step 1) The choice of bundle is fixed, in this simple
case. (It would not be fixed in general, e.g. for deeper
trees.) The bundles are shown in Figure 10.3 (a) and (b) for
tests T1 and T2, respectively.

.- .' x ,

-i5, T 'Lt.tI r lt:,it l'l litLi'~' l 'i - "I -1 ,

140

0 10

(a)

a b ab

.4 .4 .8 .8

Figure 10.3 Influential bundles for the examples in Figure

10.2

(Step 2) The constraints are:
.4a[p+].4b = .09
.8a[p+].8b = .36
(The first constraints corresponds to test T1, the second
one to test T) Or:
.4a + .4b - . 6ab = .09
.8a + .8b - .64ab - .36

Let ab = z:
.4a + .4b - .16z = .09
.8a + .8b - .64z = .36

(Step 3) A solution to the system is a = b = .25, z =
.0625. (Since there is a solution, in this simple example step
4 is never executed.) The quadratic programming problem is:

.4a + .4b -.16z = .09

.8a + .8b - E61z -. 36 E2 E2 EaE E=.
min y = (a-a) + (b-b) + (z-z E) ,where z =a bE06.

(End of example)

REFERENCES

Aho, A.V., J.E.Hopcroft, and J.D. Ullman. The Desian and
Analysis of Computer Algorithms. Reading, MA: Addison-Wesley,
1974.

Brachman, R.J. Quoted in Van de Riet, R.P. "Conference
Report: Expert Database Systems." A report on the first
conference on Expert Database Systems, appeared in Future
Generation Computer Systems, 2, 3 (September 1986), 191-196.

Breuer, M.A. and A.D. Friedman. Diagnosis and Reliable
Design of Computer Systems. Potomac, Maryland: Computer
Science Press, 1976.

Brodie, M. (ed.). Transcript of discussions from a working
group on knowledge base management systems, at the "First
International Workshop on Expert Database Systems," Kiawah
Island, South Carolina, October 24-27, 1984.

Brooks, R. and J. Heiser. "Some Experience on Transferring
the MYCIN System to a New Domain." IEEE Transactions on
Pattern Analysis and Machine Intelligence, 2, 5 (September
1980), 477-478.

Brownston, L., R. Farrell, E. Kant, and N. Martin.
Programming Expert Systems in OPS5--An Introduction to Rule-
Based Programming. Reading, Massachusetts: Addison-Wesley,
1985.

Cheeseman, P. "Learning of Expert Systems from Data."
Proceedings of the IEEE Workshop on Principles of Expert
S t (1984), 115-122.

Chi, M.T.H., R. Glaser, and E. Rees. "Expertise in Problem
Solving." Technical report No.5, Learning Research and
bevelopment Center, University of Pittsburgh, May 1981. Also
in: Sternberg, R. (ed.). Advances in the Psychology of Human
Intelligence. Hillsdale, New York: Erlbaum, 1981.

Clocksin, W.F. and C.S. Mellish. Programming in Prolog.
Berlin: Springer Verlag, 1981.

Davis, R. and J. King. "An Overview of Production Systems."

141

142

In: Elcock, E.W. and D. Michie (eds.). Machine Intelligence 8,
300-332. New York: Wiley, 1977.

Even, S. and 0. Goldreich. "The Minimum-Length Generator
Sequence Problem is NP-Hard." Journal of Algorithms 2, 3
(September 1981), 311-313.

Feigenbaum, E.A. "The Art of Artificial Intelligence. I.
Themes and Case Studies of Knowledge Engineering." Proinu
of the Fifth International Joint Conference on Artificial
Intelligence (1977), 1014-1029.

Forsyth, R. and R. Rada. Machine Learning: Applications in
Expert Systems and Information Retrieval. London: Ellis
Horwood, 1986.

Fujiwara, H. and S. Toida. "The Complexity of Fault
Detection Problems for Combinatorial Logic Circuits." I
Transactions on Computers, 31, 6 (June 1982), 555-560.

Gallant, S.I. "The Pocket Algorithm for Perceptron
Learning." College of Computer Science Technical Report SG-85-
19, Northeastern University, Boston, Massachusetts, January 2,
1985.

Garey, M.R. and D.S. Johnson. Computers and Intractability:
A Guide to the Theory of NP-Completeness. New York: Freeman,
1979.

Gashnig, J. "Prospector: An Expert System for Mineral
Exploration." In Michie, D. Introductory Readings in Expert
S. New York: Gordon and Breach Science Publishers, 1982.

Gold, M. "Language Identification in the Limit."
Information and Control, 10, 447-474 (May 1967).

Gottfried, S.B. and J. Weisman. Introduction to
Optimization Theory. Englewood Cliffs, New Jersey: Prentice-
Hall, 1973.

Hafner, C.D. Contribution to "ACM Forum." Communications
oftheAC, 29, 7 (July 1986), p.592.

Hbjek, P. "Combining Functions for Certainty Factors in
Consulting Systems." Preprint of a paper presented at the
Second International Conference on Artificial Intelligence and
Information--Control Systems of Robots, Smolenice,
Czechoslovakia, 1982.

Hardy, G.H. and E.M. Wright. An Introduction to the Theory
o, 5th ed. Oxford: Oxford University Press, 1979.

143

Hayes-Roth, F. "Knowledge-Based Expert Systems." Compliter,
17,10 (October 1984), 263-273.

Hayes-Roth F., D.A. Waterman, and D.B. Lenat. Building
Expert Systems. Reading, Massachusetts: Addison-Wesley, 1983.

Ibarra, O.H., and S.K. Sahni. "Polynomially Complete Fault
Detection Problems." IEEE Transactions on Computers, 24
(1975), 242-249.

Johnson, D.S. "The NP-Completeness Column: An Ongoing
Guide." Journal of Algorithms, 4, 1 (March 1983), 87-100.

Johnson, D.S. and F.P. Preparata. "The Densest Hemisphere
Problem." Theoretical Computer Science, 6, 1 (February 1978),
93-107.

Khaciyan, L.G. "A Polynomial Algorithm in Linear
Programming." Soviet Mathematics Doklady, 20 (1979), 191-194.

Kowalski, R. Logic for Problem Solving. New York: North
Holland, 1979.

Kozen, D. "Lower Bounds for Natural Proof Systems."
Proceedings of the 18th IEEE Symposium on Foundations of
Computer Science (1977), 254-266.

Kozlov, M.K., S.P.Tarasov, and L.G. Khaciyan. "Polynomial
Solvability of Convex Quadratic Programming." Soviet
Mathematics Doklady, 20 (1979), 5.

Kulish, U.V. and W.L. Miranker. Computer Arithmetic in
Theory and Practice. New York: Academic Press, 1981.

Kulisch, U.W. and W.L. MIranker. A New Approach to
Scientific Computation. New York: Academic Press, 1983.

Loveland, D.W. "Finding Critical Sets." Report CS-1982-23,
Department of Computer Science, Duke University (1982).

Lu, H. and S.C. Lee. "Fault Detection in M-Logic Circuits
Using the M-Difference." Proceedings of the 14th IEEE
Multiple-Valued Logic Conference (1984), 62-70.

Megiddo, N. "Is Binary Enc 'ing Appropriate for the
Problem-Language Relationship?" Theoretical Com~ueter Science,
19 (1982), 337-341.

Megiddo, N. "Towards a Genuinely Polynomial Algorithm for
Linear Programming." SlAY Journal on Computing, 12, 2 (May

.. v . v-.. - - ' " v'' ~. '.-""..

144

1983), 347-353.

Michalski, R.S. and R.L. Chilauski. "Learning by Being Told
and Learning from Examples: An Experimental Comparison of the
Two Methods of Knowledge Acquisition in the Context of
Developing an Expert System for Soybean Disease Diagnosis."
International Journal of Policy Analysis and Information
Sys.%, 4 (1980), 2, 125-161.

Michalski, R.S. and R.L. Chilauski. "Knowledge Acquisition
by Encoding Expert Rules versus Computer Induction from
Examples: A Case Study Involving Soybean Pathology."
International Journal of Man-Machine Studies, 12 (1980), 63-87.

Minski, M. and S. Papert. Perceptrons: An Introduction to
Computational Geometry. Cambridge, Massachusetts: MIT Press,
1969.

Nau, D. "Expert Computer Systems." Cmputer, 16, 2
(February 1983).

Nigrin, A. Term report for CPS215, Fall 1984, Department of
Computer Science, Duke University, Durham, North Carolina.

Nilsson, N.J. Learning Machines. Foundations of Trainable
Pattern-Classifying Systems. New York: McGraw-Hill, 1965.

Politakis, P.G. "Using Empirical Analysis to Refine Expert
System Knowledge Bases." Report CBM-TR-130, Laboratory for
Computer Science Research, Rutgers University, New Brunswick,
New Jersey, October 1980.

Politakis, P.G. and S. Weiss. "Designing Consistent
Knowledge Bases: An Approach to Expert Knowledge Acquisition."
Report CBM-TR-113, Laboratory for Computer Science Research,
Rutgers University, New Bruswick, New Jersey, March 1980.

Politakis, P.G. and S. Weiss. "Using Empirical Analysis to
Refine Expert System Knowledge Bases." Artificial
Intelligence, 22, 1 (January 1984), 23-48.

Prade, H. "A Synthetic View of Approximate Reasoning
Techniques." Proceedings of the Eight Internationa Joint
Conference on Artificial Intelligence (1983), 130-136.

Quinlan, J.R. "Inferno: A Cautious Approach to Uncertain
Inference." Computer Journal, 26 (1983), 3, 255-269.

Quinlan, J.R. "Consistency and Plausible Reasoning."
Proceedings of the Eight International Joint Conference on
Artificial Intelligence (1983), 137-144.

145

Rada, R. "Probabilities and Predicates in Knowledge
Refinement." Proceedings of the IEEE Workshop on Principles of
Knowledge-Based Systems (1984), 123-128.

Rada, R. "Gradualness Facilitates Knowledge Refinement."
IEEE Transactions on Pattern Analysis and Machine Intelligence,
7, 5 (September 1985), 523-530.

Rada, R., S. Humphrey, N. Miller, C. Coccia, and M.
Dominiak. "Knowledge Refinement for Information Retrieval."
Typescript, National Library of Medicine, Bethesda, MD, USA,
1985.

Reboh, R. Knowledge Engineering Techniques and Tools for
Expert Systems. Linkoping Studies in Science and Technology,
no.71. Linkoping, Sweden: no publisher, 1981.

Richer, M.H. "An Evaluation of Expert System Development
Tools." Expert Systems, 3, 3 (July 1986), 166-183.

Rosenbloom, P.S., J.E. Laird, J. McDermott, A. Newell, and
E. Orciuch. "Ri-Soar: An Experiment in Knowledge-Intensive
Programming in a Problem Solving Architecture." IEE=
Transactions on Pattern Analysis and Machine Intelligence, 7, 5
(September 1985), 561-569.

Ruspini, E.H. "Possibility Theory Approaches for Advanced
Information Systems." C, 15, 9 (September 1982), 83-91.

Sahni, S. "Computationally Related Problems." SIAM Journal
on Computing, 3, 4 (December 1974), 262-279.

Saitta, L., A. Giordana, A. Molli, and D. Timpanaro.
"BIMBO: A System Which Learns Its Expertise." Proceedings of
the IEEE Worksho2 on Princivles of Knowledae-Based Systems
(1984), 99-106.

Shapiro, E.Y. "Inductive Inference of Theories from Facts."
Technical Report 192, Yale University, Department of Computer
Science (February 1981).

Shapiro, E.Y. "Algorithmic Program Debugging." Research
Report 237, Yale University, Department of Computer Science
(May 1982). (Also published as a book with the same title:
Cambridge, Massachusetts: MIT Press, 1983.)

Shapiro, E.Y. "Logic Programs with Uncertainties: A Tool
for Implementing Rule-Based Expert Systems." Proceedings of
the Eight International Joint Conference on Artificial
Intelligence (1983), 529-532.

146

Shortliffe, E.H. Computer-Based Medical Consultations:
MYCIN. New York: Elsevier, 1976.

Slagle, J.R., M.W. Gainor, and E.J. Halpern. WAn
Intelligent Control Strategy for Computer Consultation." IEEE
Transactions on Pattern Analysis and Machine Intelligence, 6, 2
(March 1984), 129-136.

Stonebraker, 1984. Oral quotation from the discussion
transcribed by Brodie (1984].

Valtorta, M., B.T. Smith, and D.W. Loveland. "The Graduate
Course Advisor: A Multi-Phase Rule-Based Expert System."
Proceedings of the IEEE Workshop on Principles of Expert
S (1984), 53-57.

Van Emden, M.H. and R.A. Kowalski. "The Semantics of
Predicate Logic as a Programming Language." Journal of the
A=, 23, 4 (October 1976), 733-742.

Weiss, S. and C.A. Kulikowski. "Expert: A System for
Developing Consultation Models." Proceedings of the Sixth
International Joint Conference on Artificial Intelliaence
(1979), 142-147.

BIOGRAPHY

Marco Valtorta was born in Milan, Italy, on May 7, 1956. He
obtained the Laurea in Ingegneria Elettronica Degree (cum
laude) from the Politecnico di Milano in July 1980, with a
thesis on the computation of heuristics for the A* algorithm.
He was awarded a Fulbright scholarship to pursue a Doctoral
Degree in Computer Science at Duke University starting in
August 1980. He obtained the Master of Arts degree in Computer
Science in April 1983, developing a prototypical expert system
to advise graduate students in the selection of their course
sequences. Since October 1985, he has been fully employed with
the Commission of the European Communities, where he works for
ESPRIT (European Strategic Programme of Research and
development in Information Technologies) as a project monitor
in the area of knowledge engineering.

Publications

"A Result on the Computational Complexity of Heuristic
Search Estimates for the A* Algorithm." Information Sciences,
vol. 34 (1984), 47-59.

"The Graduate Course Advisor: A Multi-Phase Rule-Based
Expert System." Proceedings of the IEEE Workshop on PrinciRles
of Knowledge-Based Systems, December 1984.

"Detecting Ambiguity: an Example in Knowledge Evaluation."
(Second author, with D.W. Loveland.) Proceedings of the Eighth
International Joint Conference in Artificial Intelligence,
August 1983.

Marco Valtorta also wrote other conference papers (published
in the proceedings of the conferences) and internal reports.

147

9

.1

AI

I
I

- - - ~W S V~ - ~ ~ ~.;~~Y::-R :

